This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357209 #7 Sep 19 2022 11:08:03 %S A357209 1,1,9,96,1150,14981,206426,2959249,43683374,659531482,10137150414, %T A357209 158089344305,2495255246353,39785814006395,639880150931025, %U A357209 10368454503796731,169106511176489353,2773945868018478593,45734618620228469488,757469141505480597690 %N A357209 Coefficients in the power series A(x) such that: x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. %F A357209 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following relations. %F A357209 (1) x*A(x)^5 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) * A(x)^n. %F A357209 (2) -x*A(x)^6 = Sum_{n=-oo..+oo} (-1)^n * x^(n*(n+1)/2) / A(x)^n. %F A357209 (3) x*A(x)^5 = Product_{n>=1} (1 - x^n*A(x)) * (1 - x^(n-1)/A(x)) * (1 - x^n), due to the Jacobi triple product identity. %F A357209 (4) -x*A(x)^6 = Product_{n>=1} (1 - x^n/A(x)) * (1 - x^(n-1)*A(x)) * (1 - x^n), due to the Jacobi triple product identity. %e A357209 G.f.: A(x) = 1 + x + 9*x^2 + 96*x^3 + 1150*x^4 + 14981*x^5 + 206426*x^6 + 2959249*x^7 + 43683374*x^8 + 659531482*x^9 + 10137150414*x^10 + ... %e A357209 where %e A357209 x*A(x)^5 = ... - x^10/A(x)^5 + x^6/A(x)^4 - x^3/A(x)^3 + x/A(x)^2 - 1/A(x) + 1 - x*A(x) + x^3*A(x)^2 - x^6*A(x)^3 + x^10*A(x)^4 -+ ... + (-1)^n * x^(n*(n+1)/2) * A(x)^n + ... %o A357209 (PARI) {a(n) = my(A=[1, 1], t); for(i=1, n, A=concat(A, 0); t = ceil(sqrt(2*n+9)); %o A357209 A[#A] = polcoeff( x*Ser(A)^5 - sum(m=-t, t, (-1)^m*x^(m*(m+1)/2)*Ser(A)^m ), #A-1)); A[n+1]} %o A357209 for(n=0, 30, print1(a(n), ", ")) %Y A357209 Cf. A355361, A357206, A357207, A357208. %K A357209 nonn %O A357209 0,3 %A A357209 _Paul D. Hanna_, Sep 18 2022