cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357216 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of regions in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.

This page as a plain text file.
%I A357216 #23 Sep 21 2022 12:00:26
%S A357216 1,4,1,13,5,1,28,17,6,1,49,37,21,7,1,70,65,46,25,8,1,109,93,81,55,29,
%T A357216 9,1,148,145,126,97,64,33,10,1,181,181,181,151,113,73,37,11,1,244,257,
%U A357216 246,217,176,129,82,41,12,1,301,309,321,295,253,201,145,91,45,13,1
%N A357216 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of regions in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.
%C A357216 Conjecture: the only n-gons that contain non-simple intersections are the 3-gon (triangle), 4-gon (square), and 6-gon (hexagon).
%H A357216 Scott R. Shannon, <a href="/A357216/a357216.txt">Extended table for n = 3..50, k = 0..75</a>.
%H A357216 Scott R. Shannon, <a href="/A357216/a357216.jpg">Image of T(5,20) = 2001</a>.
%H A357216 Scott R. Shannon, <a href="/A357216/a357216_1.jpg">Image of T(7,10) = 701</a>.
%F A357216 T(n,k) = A357254(n,k) - A357235(n,k) + 1 by Euler's formula.
%F A357216 T(n,0) = 1.
%F A357216 T(n,1) = n + 1.
%F A357216 Conjectured formula for all columns for n >= 7: T(n,k) = n*k^2 + 1.
%F A357216 T(3,k) = A356984(k).
%F A357216 T(4,k) = A357058(k).
%F A357216 T(6,k) = A357196(k).
%F A357216 Conjectured formula for all rows except for n = 3, 4, 6: T(n,k) = n*k^2 + 1.
%e A357216 The table begins:
%e A357216   1,  4, 13,  28,  49,  70, 109, 148, 181,  244,  301,  334,  433,  508,  565, ...
%e A357216   1,  5, 17,  37,  65,  93, 145, 181, 257,  309,  401,  457,  577,  653,  785, ...
%e A357216   1,  6, 21,  46,  81, 126, 181, 246, 321,  406,  501,  606,  721,  846,  981, ...
%e A357216   1,  7, 25,  55,  97, 151, 217, 295, 385,  475,  601,  715,  865, 1015, 1159, ...
%e A357216   1,  8, 29,  64, 113, 176, 253, 344, 449,  568,  701,  848, 1009, 1184, 1373, ...
%e A357216   1,  9, 33,  73, 129, 201, 289, 393, 513,  649,  801,  969, 1153, 1353, 1569, ...
%e A357216   1, 10, 37,  82, 145, 226, 325, 442, 577,  730,  901, 1090, 1297, 1522, 1765, ...
%e A357216   1, 11, 41,  91, 161, 251, 361, 491, 641,  811, 1001, 1211, 1441, 1691, 1961, ...
%e A357216   1, 12, 45, 100, 177, 276, 397, 540, 705,  892, 1101, 1332, 1585, 1860, 2157, ...
%e A357216   1, 13, 49, 109, 193, 301, 433, 589, 769,  973, 1201, 1453, 1729, 2029, 2353, ...
%e A357216   1, 14, 53, 118, 209, 326, 469, 638, 833, 1054, 1301, 1574, 1873, 2198, 2549, ...
%e A357216   1, 15, 57, 127, 225, 351, 505, 687, 897, 1135, 1401, 1695, 2017, 2367, 2745, ...
%e A357216   1, 16, 61, 136, 241, 376, 541, 736, 961, 1216, 1501, 1816, 2161, 2536, 2941, ...
%e A357216   ...
%e A357216 See the attached text file for further examples.
%e A357216 See A356984, A357058, A357196 for more images of the n-gons.
%Y A357216 Cf. A357235 (vertices), A357254 (edges), A356984 (triangle), A357058 (square), A357196 (hexagon), A007678, A344857.
%K A357216 nonn,tabl
%O A357216 3,2
%A A357216 _Scott R. Shannon_, Sep 18 2022