This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357233 #18 Jul 14 2023 09:03:21 %S A357233 1,1,3,11,46,207,980,4810,24258,124951,654587,3476985,18682885, %T A357233 101372340,554655435,3056823864,16953795008,94555853982,529986289496, %U A357233 2983788539017,16865736120654,95677703975144,544554485912572,3108656601838926,17794927199793895 %N A357233 a(n) = coefficient of x^n in power series A(x) such that: 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2). %H A357233 Paul D. Hanna, <a href="/A357233/b357233.txt">Table of n, a(n) for n = 0..500</a> %F A357233 Generating function A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas, some of which may use A = A(x) for brevity. %F A357233 (1) 0 = Sum_{n>=0} (-1)^n * x^(n*(n-1)/2) * A(x)^(n*(n+1)/2). %F A357233 (2) 0 = 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)/(1 + x^4*A^5/(1 - x^2*A^3*(1 - x^3*A^3)/(1 + x^6*A^7/(1 - x^3*A^4*(1 - x^4*A^4)/(1 + ...))))))))), a continued fraction due to an identity of a partial elliptic theta function. %F A357233 (3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A195980. - _Paul D. Hanna_, Jul 13 2023 %e A357233 G.f.: A(x) = 1 + x + 3*x^2 + 11*x^3 + 46*x^4 + 207*x^5 + 980*x^6 + 4810*x^7 + 24258*x^8 + 124951*x^9 + 654587*x^10 + 3476985*x^11 + 18682885*x^12 + ... %e A357233 such that %e A357233 0 = 1 - A(x) + x*A(x)^3 - x^3*A(x)^6 + x^6*A(x)^10 - x^10*A(x)^15 + x^15*A(x)^21 - x^21*A(x)^28 + ... + (-1)^n*x^(n*(n-1)/2)*A(x)^(n*(n+1)/2) + ... %e A357233 SPECIFIC VALUES. %e A357233 A(1/7) = 1.2997111125331190764482142994969231... %e A357233 A(1/8) = 1.221202992288263902503896694281250380662689... %e A357233 CONTINUED FRACTION. %e A357233 The continued fraction in formula (2) may be seen to converge to zero as a limit of successive steps that begin as follows: %e A357233 [2] 1/(1 + A/(1 - A*(1 - x*A))) %e A357233 [3] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3))) %e A357233 [4] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2))))) %e A357233 [5] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)/(1 + x^4*A^5))))) %e A357233 [6] 1/(1 + A/(1 - A*(1 - x*A)/(1 + x^2*A^3/(1 - x*A^2*(1 - x^2*A^2)/(1 + x^4*A^5/(1 - x^2*A^3*(1 - x^3*A^3))))))) %e A357233 ... %e A357233 substituting A = A(x), the resulting power series in x are: %e A357233 [2] x^2 - 3*x^3 - 13*x^4 - 58*x^5 - 275*x^6 - 1350*x^7 + ... %e A357233 [3] x^3 - 5*x^4 - 23*x^5 - 111*x^6 - 553*x^7 - 2820*x^8 + ... %e A357233 [4] x^7 + 11*x^8 + 87*x^9 + 602*x^10 + 3894*x^11 + 24245*x^12 + ... %e A357233 [5] x^9 + 14*x^10 + 132*x^11 + 1046*x^12 + 7538*x^13 + ... %e A357233 [6] -x^15 - 21*x^16 - 273*x^17 - 2821*x^18 - 25432*x^19 + ... %e A357233 [7] -x^18 - 25*x^19 - 375*x^20 - 4375*x^21 - 43800*x^22 + ... %e A357233 [8] x^26 + 34*x^27 + 663*x^28 + 9725*x^29 + 119226*x^30 + ... %e A357233 ... %e A357233 the limit of these series converges to zero for |x| < r < 1 where r is the radius of convergence of g.f. A(x). %o A357233 (PARI) {a(n) = my(A=[1],M=1); for(i=1,n, A = concat(A,0); M = ceil(sqrt(2*(#A)+1)); %o A357233 A[#A] = polcoeff( sum(n=0,M, (-1)^n * x^(n*(n-1)/2) * Ser(A)^(n*(n+1)/2) ), #A-1) ); A[n+1]} %o A357233 for(n=0,30, print1(a(n),", ")) %Y A357233 Cf. A195980, A193111, A107590. %K A357233 nonn %O A357233 0,3 %A A357233 _Paul D. Hanna_, Oct 17 2022