cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357235 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.

This page as a plain text file.
%I A357235 #23 Sep 21 2022 12:00:32
%S A357235 3,6,4,15,8,5,30,20,10,6,51,40,25,12,7,66,68,50,30,14,8,111,88,85,60,
%T A357235 35,16,9,150,148,130,102,70,40,18,10,171,168,185,156,119,80,45,20,11,
%U A357235 246,260,250,222,182,136,90,50,22,12,303,296,325,300,259,208,153,100,55,24,13
%N A357235 Table read by antidiagonals: T(n,k) (n >= 3, k >= 0) is the number of vertices in an n-gon when k internal n-gons are drawn between the n*k points that divide each side into k+1 equal parts.
%C A357235 Conjecture: the only n-gons that contain non-simple intersections are the 3-gon (triangle), 4-gon (square), and 6-gon (hexagon).
%H A357235 Scott R. Shannon, <a href="/A357235/a357235.txt">Extended table for n = 3..50, k = 0..75</a>.
%H A357235 Scott R. Shannon, <a href="/A357235/a357235.png">Image of T(5,20) = 2005</a>.
%H A357235 Scott R. Shannon, <a href="/A357235/a357235_1.png">Image of T(7,10) = 707</a>.
%F A357235 T(n,k) = A357254(n,k) - A357216(n,k) + 1 by Euler's formula.
%F A357235 T(n,0) = n.
%F A357235 T(n,1) = 2n.
%F A357235 Conjectured formula for all columns for n >= 7: T(n,k) = n*k^2 + n.
%F A357235 T(3,k) = A357007(k).
%F A357235 T(4,k) = A357060(k).
%F A357235 T(6,k) = A357197(k).
%F A357235 Conjectured formula for all rows except for n = 3, 4, 6: T(n,k) = n*k^2 + n.
%e A357235 The table begins:
%e A357235    3,  6, 15,  30,  51,  66, 111, 150, 171,  246,  303,  312,  435,  510,  543, ...
%e A357235    4,  8, 20,  40,  68,  88, 148, 168, 260,  296,  404,  436,  580,  632,  788, ...
%e A357235    5, 10, 25,  50,  85, 130, 185, 250, 325,  410,  505,  610,  725,  850,  985, ...
%e A357235    6, 12, 30,  60, 102, 156, 222, 300, 390,  468,  606,  708,  870, 1020, 1152, ...
%e A357235    7, 14, 35,  70, 119, 182, 259, 350, 455,  574,  707,  854, 1015, 1190, 1379, ...
%e A357235    8, 16, 40,  80, 136, 208, 296, 400, 520,  656,  808,  976, 1160, 1360, 1576, ...
%e A357235    9, 18, 45,  90, 153, 234, 333, 450, 585,  738,  909, 1098, 1305, 1530, 1773, ...
%e A357235   10, 20, 50, 100, 170, 260, 370, 500, 650,  820, 1010, 1220, 1450, 1700, 1970, ...
%e A357235   11, 22, 55, 110, 187, 286, 407, 550, 715,  902, 1111, 1342, 1595, 1870, 2167, ...
%e A357235   12, 24, 60, 120, 204, 312, 444, 600, 780,  984, 1212, 1464, 1740, 2040, 2364, ...
%e A357235   13, 26, 65, 130, 221, 338, 481, 650, 845, 1066, 1313, 1586, 1885, 2210, 2561, ...
%e A357235   14, 28, 70, 140, 238, 364, 518, 700, 910, 1148, 1414, 1708, 2030, 2380, 2758, ...
%e A357235   15, 30, 75, 150, 255, 390, 555, 750, 975, 1230, 1515, 1830, 2175, 2550, 2955, ...
%e A357235 See the attached text file for further examples.
%e A357235 See A357007, A357060, A357197 for more images of the n-gons.
%Y A357235 Cf. A357216 (regions), A357254 (edges), A357007 (triangle), A357060 (square), A357197 (hexagon), A007569, A146212.
%K A357235 nonn,tabl
%O A357235 3,1
%A A357235 _Scott R. Shannon_, Sep 19 2022