This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357253 #34 Jan 28 2024 03:44:22 %S A357253 5,11,17,23,29,31,41,47,53,59,61,71,73,83,89,89,101,107,113,113,113, %T A357253 131,137,139,149,151,157,167,173,179,181,191,197,199,199,211,211,227, %U A357253 233,239,241,251,257,263,269,271,281,283,293,293,293,311,317,317,317,331,337,347,353 %N A357253 a(n) is the largest prime < 6*n. %C A357253 Largest prime that can be obtained after n rolls of a fair 6-sided die. %H A357253 Noga Alon and Yaakov Malinovsky, <a href="https://arxiv.org/abs/2209.07698">Hitting a prime in 2.43 dice rolls (on average)</a>, arXiv:2209.07698 [math.PR], 2022. %F A357253 a(n) = A007917(A008588(n)). %F A357253 a(n) = A151799(A008588(n)), since 6*n is never prime. %e A357253 a(11) = 61 as the largest prime <= 6*11 = 66 is 61; each of 62, 63, 64, 65 and 66 are not prime. - _David A. Corneth_, Sep 20 2022 %p A357253 a:= n-> prevprime(6*n): %p A357253 seq(a(n), n=1..60); # _Alois P. Heinz_, Sep 20 2022 %t A357253 a[n_] := NextPrime[6*n, -1]; Array[a, 60] (* _Amiram Eldar_, Sep 20 2022 *) %o A357253 (PARI) a(n) = precprime(6*n); %o A357253 (Python) %o A357253 from sympy import prevprime %o A357253 def A357253(n): return prevprime(6*n) # _Chai Wah Wu_, Sep 20 2022 %Y A357253 Cf. A002476, A007528, A007917, A008588, A060308, A118749, A151799. %K A357253 nonn,easy %O A357253 1,1 %A A357253 _Michel Marcus_, Sep 20 2022