cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357257 Number of n-node tournaments that have exactly three circular triads.

This page as a plain text file.
%I A357257 #27 Jan 06 2025 06:31:16
%S A357257 240,2880,33600,403200,5093760,68275200,972787200,14724864000,
%T A357257 236396160000,4016659046400,72067387392000,1362306097152000,
%U A357257 27071765360640000,564357385912320000,12317692759916544000,280955128203509760000
%N A357257 Number of n-node tournaments that have exactly three circular triads.
%H A357257 Ian R. Harris and Ryan P. A. McShane, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL27/McShane/mcshane1.html">Counting Tournaments with a Specified Number of Circular Triads</a>, Journal of Integer Sequences, Vol. 27 (2024), Article 24.8.7. See pages 2, 23.
%H A357257 J. B. Kadane, <a href="https://doi.org/10.1214/aoms/1177699532">Some equivalence classes in paired comparisons</a>, The Annals of Mathematical Statistics, 37 (1966), 488-494.
%F A357257 a(n) = n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*[n>5]) (see Kadane).
%F A357257 E.g.f.: (x^4 - 18*x^3 + 72*x^2 - 108*x + 54)*x^5/((3^3)*(1-x)^4).
%e A357257 a(6) = 6!*(2*(6-4) + (1/3)*(6-5)*(6-6) + (1/162)*(6-6)*(6-7)*(6-8)*[6>5]) = 2880.
%t A357257 Table[n!*(2*(n-4) + (1/3)*(n-5)*(n-6) + (1/162)*(n-6)*(n-7)*(n-8)*Boole[n>5]), {n,5,20}] (* _Stefano Spezia_, Sep 27 2022 *)
%Y A357257 Cf. A357242, A357248, A357266.
%K A357257 nonn
%O A357257 5,1
%A A357257 _Ian R Harris_, _Ryan P. A. McShane_, Sep 20 2022