cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357265 Expansion of e.g.f. -LambertW(x * log(1-x)).

This page as a plain text file.
%I A357265 #10 Feb 16 2025 08:34:04
%S A357265 0,0,2,3,32,150,1884,16380,249808,3255336,59596560,1037413080,
%T A357265 22432698144,486784686960,12233449250736,316660035739320,
%U A357265 9111729094222080,273147758526888000,8880267446524694016,301952732236006556160,10963551960785051470080
%N A357265 Expansion of e.g.f. -LambertW(x * log(1-x)).
%H A357265 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A357265 a(n) = n! * Sum_{k=1..floor(n/2)} k^(k-1) * |Stirling1(n-k,k)|/(n-k)!.
%o A357265 (PARI) my(N=20, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-lambertw(x*log(1-x)))))
%o A357265 (PARI) a(n) = n!*sum(k=1, n\2, k^(k-1)*abs(stirling(n-k, k, 1))/(n-k)!);
%Y A357265 Cf. A052807, A355842, A357267.
%K A357265 nonn
%O A357265 0,3
%A A357265 _Seiichi Manyama_, Sep 21 2022