cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357267 Expansion of e.g.f. -LambertW(x * (1 - exp(x))).

This page as a plain text file.
%I A357267 #11 Feb 16 2025 08:34:04
%S A357267 0,0,2,3,28,125,1506,12607,186600,2352681,41839750,705821171,
%T A357267 14818593516,311784460429,7603945309338,190868446707135,
%U A357267 5328147004384336,154893585657590609,4884408906341245326,161057122218190660555,5671407469802947722900
%N A357267 Expansion of e.g.f. -LambertW(x * (1 - exp(x))).
%H A357267 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%F A357267 a(n) = n! * Sum_{k=1..floor(n/2)} k^(k-1) * Stirling2(n-k,k)/(n-k)!.
%o A357267 (PARI) my(N=20, x='x+O('x^N)); concat([0, 0], Vec(serlaplace(-lambertw(x*(1-exp(x))))))
%o A357267 (PARI) a(n) = n!*sum(k=1, n\2, k^(k-1)*stirling(n-k, k, 2)/(n-k)!);
%Y A357267 Cf. A048802, A355843, A357265.
%K A357267 nonn
%O A357267 0,3
%A A357267 _Seiichi Manyama_, Sep 21 2022