cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A357277 Largest side c of primitive triples, in nondecreasing order, for integer-sided triangles with angles A < B < C = 2*Pi/3 = 120 degrees.

Original entry on oeis.org

7, 13, 19, 31, 37, 43, 49, 61, 67, 73, 79, 91, 91, 97, 103, 109, 127, 133, 133, 139, 151, 157, 163, 169, 181, 193, 199, 211, 217, 217, 223, 229, 241, 247, 247, 259, 259, 271, 277, 283, 301, 301, 307, 313, 331, 337, 343, 349, 361, 367, 373, 379, 397, 403, 403, 409, 421, 427, 427, 433, 439, 457
Offset: 1

Views

Author

Bernard Schott, Oct 01 2022

Keywords

Comments

For the corresponding primitive triples and miscellaneous properties and references, see A357274.
Solutions c of the Diophantine equation c^2 = a^2 + a*b + b^2 with gcd(a,b) = 1 and a < b.
Also, side c can be generated with integers u, v such that gcd(u,v) = 1 and 0 < v < u, c = u^2 + u*v + v^2.
Some properties:
-> Terms are primes of the form 6k+1, or products of primes of the form 6k+1.
-> The lengths c are in A004611 \ {1} without repetition, in increasing order.
-> Every term appears 2^(k-1) (k>=1) times consecutively.
-> The smallest term that appears 2^(k-1) times is precisely A121940(k): see examples.
-> The terms that appear only once in this sequence are in A133290.
-> The terms are the same as in A335895 but frequency is not the same: when a term appears m times consecutively here, it appears 2m times consecutively in A335895. This is because if (a,b,c) is a primitive 120-triple, then both (a,a+b,c) and (a+b,b,c) are 60-triples in A335893 (see Emrys Read link, lemma 2 p. 302).
Differs from A088513, the first 20 terms are the same then a(21) = 151 while A088513(21) = 157.
A050931 gives all the possible values of the largest side c, in increasing order without repetition, for all triangles with an angle of 120 degrees, but not necessarily primitive.

Examples

			c = 7 appears once because A121940(1) = 7 with triple (3,5,7) and 7^2 = 3^2 + 3*5 + 5^2.
c = 91 is the smallest term to appear twice because A121940(2) = 91 with primitive 120-triples (11, 85, 91) and (19, 80, 91).
c = 1729 is the smallest term to appear four times because A121940(3) = 1729 with triples (96, 1679, 1729), (249, 1591, 1729), (656, 1305, 1729), (799, 1185, 1729).
		

Crossrefs

Cf. A357274 (triples), A357275(smallest side), A357276 (middle side), A357278 (perimeter).

Programs

  • Maple
    for c from 5 to 500 by 2 do
    for a from 3 to c-2 do
    b := (-a + sqrt(4*c^2-3*a^2))/2;
    if b=floor(b) and gcd(a, b)=1 and a
    				

Formula

a(n) = A357274(n, 3).

A357275 Smallest side of integer-sided primitive triangles whose angles satisfy A < B < C = 2*Pi/3.

Original entry on oeis.org

3, 7, 5, 11, 7, 13, 16, 9, 32, 17, 40, 11, 19, 55, 40, 24, 13, 23, 65, 69, 56, 25, 75, 15, 104, 32, 56, 29, 17, 87, 85, 119, 31, 72, 93, 64, 144, 19, 95, 133, 40, 136, 35, 105, 21, 105, 37, 111, 185, 88, 152, 176, 23, 80, 115, 161, 41, 123, 240, 48, 205, 240, 43, 25, 129, 175, 215, 88
Offset: 1

Author

Bernard Schott, Sep 23 2022

Keywords

Comments

The triples of sides (a,b,c) with a < b < c are in nondecreasing order of largest side c, and if largest sides coincide, then by increasing order of the smallest side. This sequence lists the a's.
For the corresponding primitive triples and miscellaneous properties and references, see A357274.
Solutions a of the Diophantine equation c^2 = a^2 + a*b + b^2 with gcd(a,b) = 1 and a < b.
Also, a is generated by integers u, v such that gcd(u,v) = 1 and 0 < v < u, with a = u^2 - v^2.
This sequence is not increasing. For example, a(2) = 7 for triangle with largest side = 13 while a(3) = 5 for triangle with largest side = 19.
Differs from A088514, the first 20 terms are the same then a(21) = 56 while A088514(21) = 25.
A229858 gives all the possible values of the smallest side a, in increasing order without repetition, but for all triples, not necessarily primitive.
All terms of A106505 are values taken by the smallest side a, in increasing order without repetition for primitive triples, but not all the lengths of this side a are present; example: 3 is not in A106505 (see comment in A229849).

Examples

			a(2) = a(5) = 7 because 2nd and 5th triple are respectively (7, 8, 13) and (7, 33, 37).
		

Crossrefs

Cf. A357274 (triples), this sequence (smallest side), A357276 (middle side), A357277 (largest side), A357278 (perimeter).

Programs

  • Maple
    for c from 5 to 181 by 2 do
    for a from 3 to c-2 do
    b := (-a + sqrt(4*c^2-3*a^2))/2;
    if b=floor(b) and gcd(a, b)=1 and a
    				

Formula

a(n) = A357274(n, 1).

A357276 Middle side of integer-sided primitive triangles whose angles satisfy A < B < C = 2*Pi/3 = 120 degrees.

Original entry on oeis.org

5, 8, 16, 24, 33, 35, 39, 56, 45, 63, 51, 85, 80, 57, 77, 95, 120, 120, 88, 91, 115, 143, 112, 161, 105, 175, 165, 195, 208, 160, 168, 145, 224, 203, 187, 221, 155, 261, 217, 192, 279, 209, 288, 247, 320, 272, 323, 280, 231, 315, 273, 259, 385, 357, 333, 304, 399, 352, 253, 407, 299, 287, 440
Offset: 1

Author

Bernard Schott, Sep 25 2022

Keywords

Comments

The triples of sides (a,b,c) with a < b < c are in nondecreasing order of largest side c, and if largest sides coincide, then by increasing order of the smallest side. This sequence lists the b's.
For the corresponding primitive triples and miscellaneous properties and references, see A357274.
Solutions b of the Diophantine equation c^2 = a^2 + a*b + b^2 with gcd(a,b) = 1 and a < b.
Also, b is generated by integers u, v such that gcd(u,v) = 1 and 0 < v < u, with b = 2*u*v + v^2.
This sequence is not increasing. For example, a(8) = 56 for triangle with largest side c = 61 while a(9) = 45 for triangle with largest side c = 67.
Differs from A088586, the first 20 terms are the same then a(21) = 115 while A088586(21) = 143.
A229849 gives all the possible values of the middle side b, in increasing order without repetition, for primitive triples, while A229859 gives all the possible values of the middle side b, in increasing order without repetition, but for all triples, not necessarily primitive.

Examples

			a(17) = a(18) = 120 since 17th and 18th triples are respectively (13, 120, 127) and (23, 120, 133).
		

Crossrefs

Cf. A357274 (triples), A357275 (smallest side), this sequence (middle side), A357277 (largest side), A357278 (perimeter).
Cf. also A088586, A229849, A229859.

Programs

  • Maple
    for c from 5 to 500 by 2 do
    for a from 3 to c-2 do
    b := (-a + sqrt(4*c^2-3*a^2))/2;
    if b=floor(b) and gcd(a,b)=1 and a
    				

A357278 Perimeters of primitive integer-sided triangles with angles A < B < C = 2*Pi/3 = 120 degrees.

Original entry on oeis.org

15, 28, 40, 66, 77, 91, 104, 126, 144, 153, 170, 187, 190, 209, 220, 228, 260, 276, 286, 299, 322, 325, 350, 345, 390, 400, 420, 435, 442, 464, 476, 493, 496, 522, 527, 544, 558, 551, 589, 608, 620, 646, 630, 665, 672, 714, 703, 740, 777, 770, 798, 814, 805
Offset: 1

Author

Bernard Schott, Oct 24 2022

Keywords

Comments

This sequence lists the sums a+b+c of the triples of sides (a,b,c) of A357274.
Also, sum a+b+c of the solutions of the Diophantine equation c^2 = a^2 + a*b + b^2 with gcd(a,b) = 1 and a < b.
For miscellaneous properties, links and references, see A357274.
This sequence is not increasing. For example, a(23) = 350 for triangle with longest side = 163 while a(24) = 345 for triangle with longest side = 169.
Perimeters are in increasing order without repetition in A350045 and perimeters that appear more than once are in A350047.

Examples

			(3, 5, 7) is the smallest triple in A357274 with 7^2 = 3^2 + 3*5 + 5^2, so a(1) = 3 + 5 + 7 = 15.
		

Crossrefs

Cf. A350045 (perimeters without repetition), A350047, A357274 (triples), A357275 (smallest side), A357276 (middle side), A357277 (largest side).

Programs

  • Maple
    for c from 5 to 100 by 2 dofor a from 3 to c-2 do
    b := (-a + sqrt(4*c^2-3*a^2))/2;
    if b=floor(b) and gcd(a,b)=1 and a
    				

Formula

a(n) = A357274(n, 1) + A357274(n, 2) + A357274(n, 3).
a(n) = A357275(n) + A357276(n) + A357277(n).
Showing 1-4 of 4 results.