A357297 T(m,n) is the number of linear extensions of n fork-join DAGs of width m, read by downward antidiagonals.
1, 1, 1, 6, 1, 1, 90, 20, 2, 1, 2520, 1680, 280, 6, 1, 113400, 369600, 277200, 9072, 24, 1, 7484400, 168168000, 1009008000, 163459296, 532224, 120, 1, 681080400, 137225088000, 9777287520000, 15205637551104, 237124952064, 49420800, 720, 1, 81729648000, 182509367040000, 207786914375040000, 4847253138540933120, 765985681152147456, 689598074880000, 6671808000, 5040, 1
Offset: 0
Examples
T(3,1) = 6 is the number of linear extensions of one fork-join DAG of width 3. Let the DAG be labeled as follows: 1 / | \ 2 3 4 \ | / 5 Then the six linear extensions are: 1 2 3 4 5 1 2 4 3 5 1 3 2 4 5 1 3 4 1 5 1 4 2 3 5 1 4 3 2 5
Links
- Wikipedia, Fork-join model
Crossrefs
Programs
-
Mathematica
(* Formula *) T[m_, n_] := (n*(m+2))!/((m+1)^n*(m+2)^n) (* 5 X 5 Table *) Table[T[m, n], {m, 0, 5}, {n, 0, 5}] (* Eight rows of the triangle *) Table[Table[T[m, n - m], {m, 0, n}], {n, 0, 8}] (* As a sequence *) Flatten[Table[Table[T[m, n - m], {m, 0, n}], {n, 0, 8}]]
Formula
T(m,n) = (n*(m+2))!/((m+1)^n*(m+2)^n).
Comments