cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357298 Triangle read by rows where all entries in every even row are 1's and the entries in every odd row alternate between 0 (start/end) and 1.

This page as a plain text file.
%I A357298 #58 Jan 11 2023 06:41:08
%S A357298 0,1,1,0,1,0,1,1,1,1,0,1,0,1,0,1,1,1,1,1,1,0,1,0,1,0,1,0,1,1,1,1,1,1,
%T A357298 1,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,1,
%U A357298 1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N A357298 Triangle read by rows where all entries in every even row are 1's and the entries in every odd row alternate between 0 (start/end) and 1.
%C A357298 Row sums are equal to n for even n and (n-1)/2 for odd n; or A065423(n+1).
%F A357298 T(n, k) = 1/2 + (1/2)*(-1)^(n*(k+1)), for n >= 1 and 0 <= k <= n-1.
%F A357298 T(n, k) = (2^n - 2^(n-k-1) - 2^k) mod 3, for n >= 1 and 0 <= k <= n-1.
%F A357298 T(n, k) = A358125(n, k) mod 3, for n >= 1 and 0 <= k <= n-1.
%e A357298 Triangle begins:
%e A357298    n\k  0  1  2  3  4  5  6  7  8  9 ...
%e A357298    1    0;
%e A357298    2    1, 1;
%e A357298    3    0, 1, 0;
%e A357298    4    1, 1, 1, 1;
%e A357298    5    0, 1, 0, 1, 0;
%e A357298    6    1, 1, 1, 1, 1, 1;
%e A357298    7    0, 1, 0, 1, 0, 1, 0;
%e A357298    8    1, 1, 1, 1, 1, 1, 1, 1;
%e A357298    9    0, 1, 0, 1, 0, 1, 0, 1, 0;
%e A357298   10    1, 1, 1, 1, 1, 1, 1, 1, 1, 1;
%e A357298   ...
%e A357298 Formatted as a symmetric triangle -- regular hexagram pattern with 0's at the centers formed by connecting all 1's:
%e A357298       .----------------------------------------------.
%e A357298       |                      k=0   1   2   3   4   5 |
%e A357298       |-----------------------/---/---/---/---/--./  |
%e A357298 -------                          /   /   /   /   /   |
%e A357298 | n=1 |                     0   /   /   /   /   /|   |
%e A357298 -------                            /   /   /   / | 6 |
%e A357298 |   2 |                   1---1   /   /   /   /  |/  |
%e A357298 -------                    \ /       /   /   /   /   |
%e A357298 |   3 |                 0   1   0   /   /   /   /|   |
%e A357298 -------                    / \         /   /   / | 7 |
%e A357298 |   4 |               1---1---1---1   /   /   /  |/  |
%e A357298 -------                \ /     \ /       /   /   /   |
%e A357298 |   5 |             0   1   0   1   0   /   /   /|   |
%e A357298 -------                / \     / \         /   / | 8 |
%e A357298 |   6 |           1---1---1---1---1---1   /   /  |/  |
%e A357298 -------            \ /     \ /     \ /       /   /   |
%e A357298 |   7 |         0   1   0   1   0   1   0   /   /|   |
%e A357298 -------            / \     / \     / \         / | 9 |
%e A357298 |   8 |       1---1---1---1---1---1---1---1   /   /  |
%e A357298 -------        \ /     \ /     \ /     \ /       /   |
%e A357298 |   9 |     0   1   0   1   0   1   0   1   0   /|   |
%e A357298 -------        / \     / \     / \     / \       | . |
%e A357298 |  10 |   1---1---1---1---1---1---1---1---1---1  | . |
%e A357298 -------                                          | . |
%p A357298 T := n -> local k; seq(1/2 + 1/2*(-1)^(n*(k + 1)), k = 0 .. n - 1); # formula 1
%p A357298 seq(T(n), n=1..16); # print first 16 rows of formula 1.
%o A357298 (PARI) T(n,k) = bitnegimply(1,n) || bitand(1,k); \\ _Kevin Ryde_, Dec 21 2022
%Y A357298 Cf. A358125, A065423 (row sums).
%K A357298 nonn,easy,tabl
%O A357298 1,1
%A A357298 _Ambrosio Valencia-Romero_, Dec 20 2022