This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357312 #10 Sep 24 2022 13:29:04 %S A357312 1,0,1,1,1,1,13,1,34,1,89,1,927,1,610,189,1597,1,35890,1,46754,1873, %T A357312 28657,1,3919944,1,196418,18560,4205249,1,110187694,1,39882198,183916, %U A357312 9227465,9496,10312882481,1,63245986,1822473,11969319436,1,141930520462,1,34020543362,339200673 %N A357312 Number of compositions (ordered partitions) of n into divisors of n that are smaller than sqrt(n). %H A357312 Alois P. Heinz, <a href="/A357312/b357312.txt">Table of n, a(n) for n = 0..2000</a> %F A357312 a(n) = [x^n] 1 / (1 - Sum_{d|n, d < sqrt(n)} x^d). %p A357312 a:= proc(n) option remember; uses numtheory; local b, l; %p A357312 l, b:= select(x-> is(x<sqrt(n)), divisors(n)), %p A357312 proc(m) option remember; `if`(m=0, 1, %p A357312 add(`if`(j>m, 0, b(m-j)), j=l)) %p A357312 end; b(n) %p A357312 end: %p A357312 seq(a(n), n=0..45); # _Alois P. Heinz_, Sep 23 2022 %t A357312 a[n_] := SeriesCoefficient[1/(1 - Sum[Boole[d < Sqrt[n]] x^d, {d, Divisors[n]}]), {x, 0, n}]; Table[a[n], {n, 0, 45}] %Y A357312 Cf. A100346, A294137, A294138, A327766, A357311. %K A357312 nonn,look %O A357312 0,7 %A A357312 _Ilya Gutkovskiy_, Sep 23 2022