This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357314 #22 Mar 21 2023 06:12:31 %S A357314 1,21,1121,1211121,2111211211121,112112111212111211211121, %T A357314 12111212111211211121112112111212111211211121, %U A357314 211121121112111211211121211121121112112111212111211211121112112111212111211211121 %N A357314 a(1) = 1; a(n) is the second smallest number k such that k > a(n-1) and concatenation of a(1), ..., a(n-1), k is a palindrome. %C A357314 Conjecture: Length A055642(a(n)) = A000073(n+2), and A305393 is a sequence of digits in the concatenation of all terms in this sequence. %e A357314 For n = 3 concatenation of the previous terms is 121. Numbers that would make it a palindrome if concatenated to it are 121, 1121, ... and the second smallest of them is a(3) = 1121. %o A357314 (Python) %o A357314 pal = lambda s: s == s[::-1] %o A357314 up_to = 10 %o A357314 terms = [1, ] %o A357314 for i in range(up_to-1): %o A357314 c, r = ''.join(map(str, terms)), 0 %o A357314 for j in range(len(str(terms[-1])), len(c)+1): %o A357314 found, p = False, int(c[:j][::-1]) %o A357314 if p > terms[-1] and pal(c + c[:j][::-1]): %o A357314 r+=1 %o A357314 if r == 2: %o A357314 terms.append(p);found = True;break %o A357314 if found: continue %o A357314 j = 0 %o A357314 while 1: %o A357314 j+=1 %o A357314 r+=1 %o A357314 if r == 2: %o A357314 terms.append(int(str(j) + c[::-1])) %o A357314 break %o A357314 print(terms) %Y A357314 Cf. A000073, A002275, A055642, A083122, A305393. %K A357314 nonn,base %O A357314 1,2 %A A357314 _Gleb Ivanov_, Sep 23 2022