A357316 A distension of the Wythoff array by inclusion of intermediate rows. Square array A(n,k), n >= 0, k >= 0, read by descending antidiagonals. If S is the set such that Sum_{i in S} F_i is the Zeckendorf representation of n then A(n,k) = Sum_{i in S} F_{i+k-2}.
0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 2, 2, 2, 1, 0, 3, 3, 3, 3, 2, 0, 5, 5, 5, 4, 3, 2, 0, 8, 8, 8, 7, 5, 4, 3, 0, 13, 13, 13, 11, 8, 6, 4, 3, 0, 21, 21, 21, 18, 13, 10, 7, 5, 3, 0, 34, 34, 34, 29, 21, 16, 11, 8, 6, 4, 0, 55, 55, 55, 47, 34, 26, 18, 13, 9, 6, 4
Offset: 0
Examples
Example for n = 4, k = 3. The Zeckendorf representation of 4 is F_4 + F_2 = 3 + 1. So the values of i in the sums in the definition are 4 and 2; hence A(4,3) = Sum_{i = 2,4} F_{i+k-2} = F_{4+3-2} + F_{2+3-2} = F_5 + F_3 = 5 + 2 = 7. Square array A(n,k) begins: n\k| 0 1 2 3 4 5 6 ----+-------------------------------- 0 | 0 0 0 0 0 0 0 ... 1* | 0 1 1 2 3 5 8 ... 2 | 1 1 2 3 5 8 13 ... 3 | 1 2 3 5 8 13 21 ... 4* | 1 3 4 7 11 18 29 ... 5 | 2 3 5 8 13 21 34 ... 6* | 2 4 6 10 16 26 42 ... 7 | 3 4 7 11 18 29 47 ... 8 | 3 5 8 13 21 34 55 ... 9* | 3 6 9 15 24 39 63 ... 10 | 4 6 10 16 26 42 68 ... 11 | 4 7 11 18 29 47 76 ... 12* | 4 8 12 20 32 52 84 ... ... The asterisked rows form the start of the extended Wythoff array (A287870).
Links
- Encyclopedia of Mathematics, Zeckendorf representation
Crossrefs
Programs
-
PARI
A5206(m) = if(m>0,m-A5206(A5206(m-1)),0) A(n,k) = if(k==2,n, if(k==1,A5206(n), if(k==0,n-A5206(n), A(n,k-2)+A(n,k-1)))) \\ simple encoding of formulas, not efficient
Comments