This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357319 #9 Sep 25 2022 02:14:58 %S A357319 3,8,7,4,3,8,2,3,8,7,8,4,8,8,5,4,2,0,5,6,9,5,6,4,8,8,4,7,5,4,0,1,8,9, %T A357319 4,8,0,4,9,6,0,3,8,8,3,3,6,3,6,8,4,8,9,0,4,3,9,4,6,4,4,5,7,5,5,8,7,6, %U A357319 5,4,3,9,0,4,2,8,9,6,0,6,0,3,4,0,6,6,2,8,6,1 %N A357319 Decimal expansion of 6*Pi*Gamma(2/3)^2/(sqrt(3)*Gamma(1/3)^4). %H A357319 Markus Faulhuber, Anupam Gumber, and Irina Shafkulovska, <a href="https://arxiv.org/abs/2209.04202">The AGM of Gauss, Ramanujan's corresponding theory, and spectral bounds of self-adjoint operators</a>, arXiv:2209.04202 [math.CA], 2022, p. 21. %F A357319 Equals 6*A000796*A073006^2/(A002194*A073005^4). %F A357319 Equals (8*Pi^3)/(sqrt(3)*Gamma(1/3)^6) = A212003/(A002194*A073005^6). - _Peter Luschny_, Sep 24 2022 %e A357319 0.3874382387848854205695648847540189480496... %p A357319 (8*Pi^3)/(sqrt(3)*GAMMA(1/3)^6): evalf(%, 92); # _Peter Luschny_, Sep 24 2022 %t A357319 First[RealDigits[N[6*Pi*Gamma[2/3]^2/(Sqrt[3]*Gamma[1/3]^4), 90]]] %o A357319 (PARI) 6*Pi*gamma(2/3)^2/(sqrt(3)*gamma(1/3)^4) \\ _Michel Marcus_, Sep 24 2022 %Y A357319 Cf. A000796, A002194, A073005, A073006, A212003. %K A357319 nonn,cons %O A357319 0,1 %A A357319 _Stefano Spezia_, Sep 23 2022