cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357327 a(n) is the unique nonnegative integer k <= A058084(n)/2 such that binomial(A058084(n),k) = n.

This page as a plain text file.
%I A357327 #15 Sep 24 2022 16:41:12
%S A357327 0,1,1,1,1,2,1,1,1,2,1,1,1,1,2,1,1,1,1,3,2,1,1,1,1,1,1,2,1,1,1,1,1,1,
%T A357327 3,2,1,1,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,2,3,1,1,1,1,1,1,1,1,1,2,1,1,
%U A357327 1,4,1,1,1,1,1,1,1,2,1,1,1,1,1,3,1,1,1
%N A357327 a(n) is the unique nonnegative integer k <= A058084(n)/2 such that binomial(A058084(n),k) = n.
%H A357327 Pontus von Brömssen, <a href="/A357327/b357327.txt">Table of n, a(n) for n = 1..10000</a>
%F A357327 A007318(A058084(n),a(n)) = n.
%e A357327 The first occurrence of 6 in Pascal's triangle is in row 4 = A058084(6) and binomial(4,2) = 6, so a(6) = 2.
%o A357327 (PARI) a(n) = my(k=0); while (!vecsearch(vector((k+2)\2, i, binomial(k, i-1)), n), k++); select(x->(x==n), vector((k+2)\2, i, binomial(k, i-1)), 1)[1] - 1; \\ _Michel Marcus_, Sep 24 2022
%Y A357327 Cf. A007318, A058084.
%K A357327 nonn
%O A357327 1,6
%A A357327 _Pontus von Brömssen_, Sep 24 2022