This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357332 #12 Sep 25 2022 04:25:25 %S A357332 0,1,0,2,1,1,2,0,2,1,1,2,2,2,0,2,1,1,2,2,2,2,3,3,2,2,2,1,3,2,2,2,2,3, %T A357332 3,2,2,2,2,3,1,3,2,2,2,2,3,3,2,2,2,2,3,3,3,3,3,1,3,2,2,2,2,3,3,2,2,2, %U A357332 2,3,3,3,3,3,3,3,1,4,2,2,2,2,3,3,2,2,2,2,3,3,3 %N A357332 2-adic valuation of A000793(n). %C A357332 Is it true that lim_{n->+oo} a(n) = +oo? It seems that the last occurrences of 0, 1, 2, 3, and 4 appear at indices 15, 77, 667, 4535, and 7520. More generally, is it true that lim_{n->+oo} v(A000793(n),p) = +oo for every prime p, where v(k,p) is the p-adic valuation of k? %H A357332 Jianing Song, <a href="/A357332/b357332.txt">Table of n, a(n) for n = 1..10000</a> %e A357332 a(15) = 0 since A000793(15) = lcm(3,5,7) = 105 is odd. %e A357332 a(77) = 1 since A000793(77) = lcm(2,3,5,7,11,13,17,19) = 9699690 is even but not divisible by 4. %o A357332 (PARI) listn(N) = { %o A357332 my(V = vector(N, n, 1)); %o A357332 forprime (i=2, N, \\ primes i %o A357332 forstep (j=N, i, -1, %o A357332 my( hi = V[j] ); %o A357332 my( pp = i ); \\ powers of prime i %o A357332 while ( pp<=j, \\ V[] is 1-based %o A357332 hi = max(if(j==pp, pp, V[j-pp]*pp), hi); %o A357332 pp *= i; %o A357332 ); %o A357332 V[j] = hi; %o A357332 ); %o A357332 ); %o A357332 vector(N, n, valuation(V[n], 2)); %o A357332 } \\ copied from _Joerg Arndt_'s code for A000793 %Y A357332 Cf. A000793. %K A357332 nonn %O A357332 1,4 %A A357332 _Jianing Song_, Sep 24 2022