cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357337 E.g.f. satisfies A(x) = log(1 + x) * exp(2 * A(x)).

This page as a plain text file.
%I A357337 #24 Feb 16 2025 08:34:04
%S A357337 0,1,3,26,334,5964,135228,3729872,121172560,4532603904,191869653120,
%T A357337 9067948437888,473297792213376,27039987154142208,1678363256057198592,
%U A357337 112467293224249912320,8092242817059530284032,622253112192770288799744
%N A357337 E.g.f. satisfies A(x) = log(1 + x) * exp(2 * A(x)).
%H A357337 Seiichi Manyama, <a href="/A357337/b357337.txt">Table of n, a(n) for n = 0..356</a>
%H A357337 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/LambertW-Function.html">Lambert W-Function</a>.
%H A357337 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A357337 E.g.f.: -LambertW(-2 * log(1 + x))/2.
%F A357337 a(n) = Sum_{k=1..n} (2 * k)^(k-1) * Stirling1(n,k).
%F A357337 a(n) ~ n^(n-1) / (sqrt(2) * (exp(exp(-1)/2) - 1)^(n - 1/2) * exp(n + exp(-1)/4 - 1/2)). - _Vaclav Kotesovec_, Oct 04 2022
%F A357337 E.g.f.: Series_Reversion( exp(x * exp(-2*x)) - 1 ). - _Seiichi Manyama_, Sep 10 2024
%t A357337 nmax = 20; A[_] = 0;
%t A357337 Do[A[x_] = Log[1 + x]*Exp[2*A[x]] + O[x]^(nmax+1) // Normal, {nmax}];
%t A357337 CoefficientList[A[x], x]*Range[0, nmax]! (* _Jean-François Alcover_, Mar 05 2024 *)
%o A357337 (PARI) my(N=20, x='x+O('x^N)); concat(0, Vec(serlaplace(-lambertw(-2*log(1+x))/2)))
%o A357337 (PARI) a(n) = sum(k=1, n, (2*k)^(k-1)*stirling(n, k, 1));
%Y A357337 Cf. A277489, A357338.
%Y A357337 Cf. A349504.
%K A357337 nonn
%O A357337 0,3
%A A357337 _Seiichi Manyama_, Sep 24 2022