This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357339 #12 Dec 10 2023 09:23:51 %S A357339 1,-1,1,10,-2,1,-270,24,-3,1,14056,-720,44,-4,1,-1197000,40320,-1500, %T A357339 70,-5,1,151169040,-3628800,92064,-2700,102,-6,1,-26521775280, %U A357339 479001600,-8890560,181888,-4410,140,-7,1,6169461217920,-87178291200,1241982720,-18910080,324912,-6720,184,-8,1 %N A357339 Triangle read by rows. T(n, k) = Sum_{j=0..n-k} binomial(-n, j) * A268437(n - k, j). %e A357339 Triangle starts: %e A357339 [0] 1; %e A357339 [1] -1, 1; %e A357339 [2] 10, -2, 1; %e A357339 [3] -270, 24, -3, 1; %e A357339 [4] 14056, -720, 44, -4, 1; %e A357339 [5] -1197000, 40320, -1500, 70, -5, 1; %e A357339 [6] 151169040, -3628800, 92064, -2700, 102, -6, 1; %p A357339 A357339 := proc(n, k) local u; u:=(n - k); (2*u)!*add(binomial(-n, j) * j! * add((-1)^(j+m)*binomial(u+j, u+m)*Stirling2(u+m, m), m=0..j) / (u+j)!, j=0..u) end: seq(print(seq(A357339(n, k), k=0..n)), n=0..6); %o A357339 (SageMath) # using function A268437. %o A357339 def A357339(n, k): %o A357339 return sum(binomial(-n, i) * A268437(n - k, i) for i in range(n - k + 1)) %o A357339 for n in range(9): print([A357339(n, k) for k in range(n + 1)]) %Y A357339 Cf. A357342 (alternating row sums), A268437, A357340. %K A357339 sign,tabl %O A357339 0,4 %A A357339 _Peter Luschny_, Sep 25 2022