A357342
a(n) = Sum_{k=0..n} ((-1)^(n - k) * A357339(n, k)).
Original entry on oeis.org
1, 2, 13, 298, 14825, 1238896, 154892713, 27009853886, 6257900733745, 1858486623941620, 688135964728698641, 310726469248576739458, 168049914540105868641241, 107234597681651999462375720, 79717829408115648827783288185, 68293032241442657676784109954086
Offset: 0
A357340
Triangle read by rows. T(n, k) = Sum_{j=0..n-k} binomial(-n, j) * A268438(n - k, j).
Original entry on oeis.org
1, -1, 1, 2, -2, 1, 0, 12, -3, 1, -56, -120, 28, -4, 1, 0, 1680, -450, 50, -5, 1, 15840, -30240, 10416, -1080, 78, -6, 1, 0, 665280, -317520, 33712, -2100, 112, -7, 1, -17297280, -17297280, 12070080, -1391040, 81648, -3600, 152, -8, 1
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] -1, 1;
[2] 2, -2, 1;
[3] 0, 12, -3, 1;
[4] -56, -120, 28, -4, 1;
[5] 0, 1680, -450, 50, -5, 1;
[6] 15840, -30240, 10416, -1080, 78, -6, 1;
[7] 0, 665280, -317520, 33712, -2100, 112, -7, 1;
[8] -17297280, -17297280, 12070080, -1391040, 81648, -3600, 152, -8, 1;
-
A357340 := proc(n, k) local u; u := n - k; (2*u)!*add(binomial(-n, j) * j! *
add((-1)^(j+m)*binomial(u+j, u+m)*abs(Stirling1(u+m, m)), m=0..j)/(u +j)!, j=0..u) end: seq(print(seq(A357340(n, k), k=0..n)), n=0..8);
-
# using function A268438
def A357340(n, k):
return sum(binomial(-n, i) * A268438(n - k, i) for i in range(n - k + 1))
for n in range(10): print([A357340(n, k) for k in range(n + 1)])
Showing 1-2 of 2 results.