cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357366 Expansion of Product_{k>=0} 1 / (1 - x^(2^k) - x^(2^(k+1)))^(2^k).

This page as a plain text file.
%I A357366 #14 Oct 08 2022 06:49:53
%S A357366 1,1,4,5,18,23,59,82,203,285,610,895,1838,2733,5217,7950,14763,22713,
%T A357366 40526,63239,110652,173891,297529,471420,796706,1268126,2116508,
%U A357366 3384634,5606444,8991078,14791302,23782380,38955441,62737821,102388280,165126101,268844542,433970643
%N A357366 Expansion of Product_{k>=0} 1 / (1 - x^(2^k) - x^(2^(k+1)))^(2^k).
%F A357366 G.f. A(x) satisfies: A(x) = A(x^2)^2 / (1 - x - x^2).
%F A357366 a(n) ~ c * phi^(n+1) / sqrt(5), where c = Product_{k>=1} 1/(1 - x^(2^k) - x^(2^(k+1)))^(2^k) = 11.1991985012843182084779984477952870732899201240395056... and phi = A001622 is the golden ratio. - _Vaclav Kotesovec_, Oct 08 2022
%t A357366 nmax = 37; CoefficientList[Series[Product[1/(1 - x^(2^k) - x^(2^(k + 1)))^(2^k), {k, 0, Floor[Log[2, nmax]] + 1}], {x, 0, nmax}], x]
%t A357366 nmax = 37; A[_] = 1; Do[A[x_] = A[x^2]^2/(1 - x - x^2) + O[x]^(nmax + 1) // Normal, nmax + 1]; CoefficientList[A[x], x]
%Y A357366 Cf. A073709, A084782, A173285, A237651.
%K A357366 nonn
%O A357366 0,3
%A A357366 _Ilya Gutkovskiy_, Sep 25 2022