A357378 Lexicographically earliest sequence of positive integers such that the values a(floor(n/2)) * a(n) are all distinct.
1, 2, 2, 3, 4, 5, 1, 3, 3, 4, 1, 3, 7, 11, 6, 7, 8, 9, 5, 7, 13, 14, 10, 11, 5, 6, 2, 4, 6, 8, 7, 8, 4, 5, 5, 6, 5, 10, 9, 10, 2, 3, 6, 7, 6, 8, 5, 6, 13, 15, 12, 13, 17, 19, 13, 16, 15, 16, 11, 13, 11, 13, 14, 15, 17, 19, 17, 19, 20, 21, 17, 18, 22, 23, 13
Offset: 0
Keywords
Examples
The first terms are: n a(n) a(floor(n/2)) a(floor(n/2))*a(n) -- ---- ------------- ------------------ 0 1 1 1 1 2 1 2 2 2 2 4 3 3 2 6 4 4 2 8 5 5 2 10 6 1 3 3 7 3 3 9 8 3 4 12 9 4 4 16 10 1 5 5 11 3 5 15 12 7 1 7
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- Rémy Sigrist, Density plot of the first 10000000 terms
- Rémy Sigrist, C program
Programs
-
C
See Links section.
-
Python
from itertools import count, islice def agen(): # generator of terms alst, disallowed = [1], {1}; yield 1 for n in count(1): ahalf, k = alst[n//2], 1 while ahalf*k in disallowed: k += 1 an = k; yield an; alst.append(an); disallowed.add(ahalf*an) print(list(islice(agen(), 75))) # Michael S. Branicky, Sep 26 2022
Formula
a(2*n + 1) > a(2*n).
Comments