This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357393 #17 Sep 10 2024 04:21:51 %S A357393 0,1,7,110,2730,93024,4037880,213127200,13253058000,948964262400, %T A357393 76899763100160,6957624460550400,695236239163065600, %U A357393 76043127767523840000,9036546669251861760000,1159342449440429270016000,159708538424128885551360000,23512778013219939149561856000 %N A357393 E.g.f. satisfies A(x) = -log(1 - x * exp(3 * A(x))). %H A357393 <a href="/index/Res#revert">Index entries for reversions of series</a> %F A357393 E.g.f. satisfies A(x) = log(1 + x * exp(4 * A(x))). %F A357393 a(n) = Sum_{k=1..n} (3 * n)^(k-1) * |Stirling1(n,k)|. %F A357393 a(n) = Sum_{k=1..n} (4 * n)^(k-1) * Stirling1(n,k). %F A357393 a(n) = Product_{k=3*n+1..4*n-1} k = (4*n-1)!/(3*n)! for n > 0. %F A357393 E.g.f.: Series_Reversion( exp(-4*x) * (exp(x) - 1) ). - _Seiichi Manyama_, Sep 10 2024 %o A357393 (PARI) a(n) = sum(k=1, n, (3*n)^(k-1)*abs(stirling(n, k, 1))); %o A357393 (PARI) a(n) = sum(k=1, n, (4*n)^(k-1)*stirling(n, k, 1)); %o A357393 (PARI) a(n) = if(n==0, 0, (4*n-1)!/(3*n)!); %Y A357393 Cf. A006963, A357392. %Y A357393 Cf. A357334. %K A357393 nonn %O A357393 0,3 %A A357393 _Seiichi Manyama_, Sep 26 2022