cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357394 E.g.f. satisfies A(x) = exp(x * exp(2 * A(x))) - 1.

This page as a plain text file.
%I A357394 #18 Sep 10 2024 04:23:48
%S A357394 0,1,5,55,953,22651,685525,25222359,1093148145,54549313651,
%T A357394 3080446982221,194213549023407,13522789698386281,1030619149263349387,
%U A357394 85336828127587240261,7628421633465044832391,732208108150442899232737,75108533335473988089786147
%N A357394 E.g.f. satisfies A(x) = exp(x * exp(2 * A(x))) - 1.
%H A357394 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A357394 a(n) = Sum_{k=1..n} (2 * n)^(k-1) * Stirling2(n,k).
%F A357394 a(n) ~ n^(n-1) / (2 * sqrt(1 + LambertW(1/2)) * LambertW(1/2)^n * exp(n*(3 - 1/LambertW(1/2)))). - _Vaclav Kotesovec_, Nov 14 2022
%F A357394 E.g.f.: Series_Reversion( exp(-2*x) * log(1 + x) ). - _Seiichi Manyama_, Sep 10 2024
%t A357394 Table[Sum[(2*n)^(k-1) * StirlingS2[n, k], {k, 1, n}], {n, 0, 20}] (* _Vaclav Kotesovec_, Nov 14 2022 *)
%o A357394 (PARI) a(n) = sum(k=1, n, (2*n)^(k-1)*stirling(n, k, 2));
%Y A357394 Cf. A052888, A357395.
%Y A357394 Cf. A357335.
%K A357394 nonn
%O A357394 0,3
%A A357394 _Seiichi Manyama_, Sep 26 2022