This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357414 #30 Mar 07 2025 07:49:55 %S A357414 0,0,1,1,4,4,5,5,8,12,13,13,20,20,21,21,30,30,59,59,62,62,63,63,94, %T A357414 104,105,187,190,190,191,191,306,306,307,307,564,564,565,565,582,582, %U A357414 583,583,586,600,601,601,1120,1134,1275,1275,1278,1278,2125,2125,2144,2144,2145,2145,2360,2360,2361,2381,3938,3938,3939,3939,3942,3942,3943,3943,6560,6560,6561,9663,9666 %N A357414 Number of nonempty subsets of {1..n} whose elements have an even geometric mean. %H A357414 Max Alekseyev, <a href="/A357414/b357414.txt">Table of n, a(n) for n = 0..255</a> %F A357414 a(p) = a(p-1) for prime p > 2. - _Michael S. Branicky_, Sep 30 2022 %F A357414 a(n) = A326027(n) - A357413(n). - _Max Alekseyev_, Mar 06 2025 %e A357414 a(8) = 8 subsets: {2}, {4}, {6}, {8}, {1, 4}, {2, 8}, {1, 2, 4} and {2, 4, 8}. %o A357414 (Python) %o A357414 from functools import lru_cache %o A357414 from sympy import integer_nthroot %o A357414 def cond(p, c): r, b = integer_nthroot(p, c); return b and r&1 == 0 %o A357414 @lru_cache(maxsize=None) %o A357414 def b(n, p, c): %o A357414 if n == 0: return int (c > 0 and cond(p, c)) %o A357414 return b(n-1, p, c) + b(n-1, p*n, c+1) %o A357414 a = lambda n: b(n, 1, 0) %o A357414 print([a(n) for n in range(26)]) # _Michael S. Branicky_, Sep 29 2022 %Y A357414 Cf. A326027, A357356, A357412, A357413, A357416. %K A357414 nonn %O A357414 0,5 %A A357414 _Ilya Gutkovskiy_, Sep 27 2022 %E A357414 a(24)-a(41) from _Michael S. Branicky_, Sep 30 2022 %E A357414 Terms a(42) onward from _Max Alekseyev_, Oct 11 2023 %E A357414 a(0) prepended by _Max Alekseyev_, Mar 06 2025