This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357417 #38 Nov 20 2022 05:54:38 %S A357417 1,5,12,27,43,76,109,168,218,301,383,499,591,779,904,1153,1322,1555, %T A357417 1817,2143,2379,2790,3164,3627,3957,4546,5034,5599,6062,6937,7456, %U A357417 8369,8973,9896,10678,11663,12430,13732,14618,15920,16996,18471,19570,20934,22189,24080 %N A357417 Row sums of the triangular array A357431. %C A357417 The rows of the triangular array A357431 are chains of numbers that end with the positive terms of A007952. %C A357417 It appears that lim_{n->oo} a(n)/A002411(n) will converge to a number close to 0.464401.. . - _Thomas Scheuerle_, Sep 27 2022 %e A357417 For n = 6, the numbers of the chain that are divisible by 6, 5, 4, 3, 2, and 1 are 6, 10, 12, 15, 16, and 17, these forming row 6 of A357431. The sum of this row is a(6) = 76. %t A357417 a[n_] := Module[{k = n, s = n, r}, Do[k++; k += If[(r = Mod[k, i]) == 0, 0, i - Mod[k, i]]; s += k, {i, n - 1, 1, -1}]; s]; Array[a, 50] (* _Amiram Eldar_, Sep 27 2022 *) %o A357417 (MATLAB) %o A357417 function a = A357417( max_n ) %o A357417 for n = 1:max_n %o A357417 k = [n:-1:1]; %o A357417 for m = 2:length(k) %o A357417 k(m) = k(m)*(floor(k(m-1)/k(m))+1); %o A357417 end %o A357417 a(n) = sum(k); %o A357417 end %o A357417 end % _Thomas Scheuerle_, Sep 27 2022 %o A357417 (PARI) a(n) = my(t=0); sum(k=0,n-1, t++; t+=(-t)%(n-k)); \\ _Kevin Ryde_, Sep 27 2022 %Y A357417 Cf. A357431, A002411. %K A357417 nonn %O A357417 1,2 %A A357417 _Tamas Sandor Nagy_, Sep 27 2022