This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357421 #11 Oct 15 2023 09:26:39 %S A357421 1,2,54,1377,55350,4164534,217595322,11974135554,999599777190, %T A357421 150051627647010,11873389098337236 %N A357421 a(n) is the hafnian of the 2n X 2n symmetric matrix whose generic element M[i,j] is equal to the digital root of i*j. %H A357421 Wikipedia, <a href="https://en.wikipedia.org/wiki/Hafnian">Hafnian</a> %H A357421 Wikipedia, <a href="https://en.wikipedia.org/wiki/Symmetric_matrix">Symmetric matrix</a> %e A357421 a(3) = 1377: %e A357421 1, 2, 3, 4, 5, 6; %e A357421 2, 4, 6, 8, 1, 3; %e A357421 3, 6, 9, 3, 6, 9; %e A357421 4, 8, 3, 7, 2, 6; %e A357421 5, 1, 6, 2, 7, 3; %e A357421 6, 3, 9, 6, 3, 9. %t A357421 M[i_, j_, n_] := If[i*j == 0, 0, 1 + Mod[i*j - 1, 9]]; a[n_] := Sum[Product[M[Part[PermutationList[s, 2 n], 2 i - 1], Part[PermutationList[s, 2 n], 2 i], 2 n], {i, n}], {s, SymmetricGroup[2 n] // GroupElements}]/(n!*2^n); Array[a, 6, 0] %Y A357421 Cf. A003991, A010888, A353109, A353933 (permanent of M(n)), A353974 (trace of M(n)). %Y A357421 Cf. A202038, A336114, A336286, A336400, A338456. %Y A357421 Cf. A356481, A356482, A356483, A356484, A357279. %K A357421 nonn,base,hard,more %O A357421 0,2 %A A357421 _Stefano Spezia_, Sep 27 2022 %E A357421 a(6)-a(10) from _Pontus von Brömssen_, Oct 15 2023