cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357423 E.g.f. satisfies A(x) * exp(A(x)) = log(1 + x * exp(A(x))).

This page as a plain text file.
%I A357423 #17 Sep 10 2024 04:25:55
%S A357423 0,1,-1,-1,10,4,-384,818,29800,-205200,-3612000,56042832,556589232,
%T A357423 -19091774352,-70128589608,8044430218680,-25379500932864,
%U A357423 -4055729067351552,48310659088501248,2334746679051721536,-58078273556262804480,-1420062892415588203776
%N A357423 E.g.f. satisfies A(x) * exp(A(x)) = log(1 + x * exp(A(x))).
%H A357423 Seiichi Manyama, <a href="/A357423/b357423.txt">Table of n, a(n) for n = 0..422</a>
%H A357423 <a href="/index/Res#revert">Index entries for reversions of series</a>
%F A357423 a(n) = Sum_{k=1..n} (n-k)^(k-1) * Stirling1(n,k).
%F A357423 E.g.f.: Series_Reversion( exp(-x) * (exp(x * exp(x)) - 1) ). - _Seiichi Manyama_, Sep 10 2024
%o A357423 (PARI) a(n) = sum(k=1, n, (n-k)^(k-1)*stirling(n, k, 1));
%Y A357423 Cf. A357349, A357350, A357351.
%Y A357423 Cf. A349587.
%K A357423 sign
%O A357423 0,5
%A A357423 _Seiichi Manyama_, Sep 27 2022