cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357426 Primes p such that p^2+4 is a prime times 5^k for some k >= 1.

Original entry on oeis.org

11, 19, 31, 41, 61, 71, 79, 89, 109, 131, 139, 149, 151, 181, 191, 239, 241, 251, 379, 389, 409, 421, 461, 499, 509, 541, 599, 631, 659, 661, 709, 719, 769, 811, 919, 1009, 1019, 1021, 1031, 1109, 1129, 1151, 1201, 1231, 1291, 1361, 1399, 1409, 1451, 1489, 1549, 1601, 1621, 1721, 1789, 1871, 1889, 1931, 2011, 2039, 2069, 2131, 2179, 2221, 2251, 2309, 2341, 2351
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Sep 27 2022

Keywords

Comments

All terms == 1 or 9 (mod 10).

Examples

			a(4) = 41 is a term because 41 is prime and 41^2+4 = 1685 = 337 * 5^1 where 337 is prime.
		

Crossrefs

Disjoint from A062324.

Programs

  • Maple
    filter:= proc(p) local v;
      if not isprime(p) then return false fi;
      v:= p^2+4;
      isprime(v/5^padic:-ordp(v,5))
    end proc:
    filter(11):= true:
    select(filter, [seq(seq(10*i+j, j= [1,9]),i=1..1000)]);
  • Mathematica
    q[p_] := (e = IntegerExponent[m = p^2 + 4, 5]) > 0 && (m==5^e || PrimeQ[m/5^e]); Select[Prime[Range[350]], q] (* Amiram Eldar, Sep 28 2022 *)