This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357428 #18 Oct 01 2022 19:18:28 %S A357428 1,6,52,63,222,2037,6776,26896,124641,220336192,222066488 %N A357428 Numbers whose digit representation in base 2 is equal to the digit representation in base 2 of the initial terms of their sets of divisors in increasing order. %C A357428 a(1), a(2), a(3), a(8) and a(10) belong to A164894; A164894(13) = 2032242676629600594233921536, A164894(19) = 1288086824419468350412109535086131006200927555108489920512 and A164894(29) are also terms. - _Rémy Sigrist_, Sep 28 2022 %e A357428 In base 2, 6 is 110 and its first divisors are 1 and 2, that is, 1 and 10. %o A357428 (PARI) isok(k) = my(s=[]); fordiv(k, d, s=concat(s, binary(d)); if (fromdigits(s, 2)==k, return(1)); if (fromdigits(s,2)> k, return(0))); %o A357428 (Python) %o A357428 from sympy import divisors %o A357428 def ok(n): %o A357428 target, s = bin(n)[2:], "" %o A357428 if target[0] != "1": return False %o A357428 for d in divisors(n): %o A357428 s += bin(d)[2:] %o A357428 if len(s) >= len(target): return s == target %o A357428 elif not target.startswith(s): return False %o A357428 print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Oct 01 2022 %Y A357428 Cf. A164894, A175252 (base 10), A357429 (base 3). %K A357428 nonn,base,more %O A357428 1,2 %A A357428 _Michel Marcus_, Sep 28 2022 %E A357428 a(10)-a(11) from _Rémy Sigrist_, Sep 28 2022