This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357429 #9 Oct 02 2022 10:32:23 %S A357429 1,48,50,333,438,448,734217,6561081 %N A357429 Numbers whose digit representation in base 3 is equal to the digit representation in base 3 of the initial terms of their sets of divisors in increasing order. %e A357429 In base 3, 48 is 1210 and its first divisors are 1, 2 and 3, that is, 1, 2 and 10. %o A357429 (PARI) isok(k) = my(s=[]); fordiv(k, d, s=concat(s, digits(d, 3)); if (fromdigits(s, 3)==k, return(1)); if (fromdigits(s, 3)> k, return(0))); %o A357429 (Python) %o A357429 from sympy import divisors %o A357429 from sympy.ntheory import digits %o A357429 def ok(n): %o A357429 target, s = "".join(map(str, digits(n, 3)[1:])), "" %o A357429 if target[0] != "1": return False %o A357429 for d in divisors(n): %o A357429 s += "".join(map(str, digits(d, 3)[1:])) %o A357429 if len(s) >= len(target): return s == target %o A357429 elif not target.startswith(s): return False %o A357429 print([k for k in range(10**5) if ok(k)]) # _Michael S. Branicky_, Oct 01 2022 %Y A357429 Cf. A175252 (base 10), A357428 (base 2). %K A357429 nonn,base,more %O A357429 1,2 %A A357429 _Michel Marcus_, Sep 28 2022