A357434 a(n) is the number of distinct Q-toothpicks after the n-th stage of the structure described in A211000.
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 18, 18, 18, 18, 19, 20, 21, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 23, 24, 25, 26, 27, 28, 28
Offset: 0
Keywords
Examples
In the following diagrams the A211000 structure is shown at the end of the n-th stage (Q-toothpicks are depicted as straight lines instead of circle arcs). . n 0 1 10 15 32 39 60 65 a(n) 0 1 10 15 16 20 23 28 . /\ \/ \ / / / /\ /\ \ \/ \/ / /\ /\ /\ /\/\ /\/\ /\/\ \ \ \/ \/ \/ \/ \ /\ /\ /\ /\ /\ / \/ \/ \/ \/ \/ / /\ /\ /\ /\ /\ \ \/ \/ \/ \/ \/ \ /\ /\ /\ /\ /\ \/ \/ \/ \/ \/ \/ .
Links
Programs
-
Mathematica
A357434[nmax_]:=Module[{a={0},tp={},ep1={0,0},ep2,angle=0,turn=Pi/2},Do[If[!PrimeQ[n],If[n>5&&PrimeQ[n-1],turn*=-1];angle-=turn];tp=Union[tp,{{ep1,ep2=AngleVector[ep1,angle]}}];ep1=ep2;AppendTo[a,Length[tp]],{n,0,nmax-1}];a]; A357434[100]
-
PARI
A357434(nmax) = my(a=List([0,1]), newtp=[[0, 0], [1, 1]], tp=Set([newtp]), turn=1, p1, p2); if(nmax==0, return([0]));for(n=1, nmax-1, p1=newtp[1]; p2=newtp[2]; if(isprime(n), newtp=[p2, [2*p2[1]-p1[1], 2*p2[2]-p1[2]]], if(n>5 && isprime(n-1), turn*=-1); newtp=[p2, [p2[1]-turn*(p1[2]-p2[2]), p2[2]+turn*(p1[1]-p2[1])]]); tp=setunion(tp, [newtp]); listput(a,length(tp))); Vec(a); A357434(100)
-
Python
from sympy import isprime def A357434(nmax): newtp, a, turn = ((0, 0), (1, 1)), [0, 1], 1 tp = {newtp} for n in range(1, nmax): p1, p2 = newtp[0], newtp[1] if isprime(n): # Continue straight newtp = (p2, (2*p2[0]-p1[0], 2*p2[1]-p1[1])) else: # Turn if n>5 and isprime(n-1): turn *= -1 newtp = (p2, (p2[0]-turn*(p1[1]-p2[1]), p2[1]+turn*(p1[0]-p2[0]))) tp.add(newtp) a.append(len(tp)) return a[:nmax+1] print(A357434(100))
Comments