This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357463 #7 Oct 13 2022 13:04:40 %S A357463 4,2,3,8,5,3,7,9,9,0,6,9,7,8,3,2,7,1,3,7,8,0,4,0,0,6,2,6,2,5,5,1,5,2, %T A357463 3,3,6,7,6,3,8,8,1,9,7,1,8,5,1,7,7,5,4,0,8,2,3,0,0,8,3,9,6,8,1,9,9,5, %U A357463 4,7,2,8,6,4,0,7,0,3 %N A357463 Decimal expansion of the real root of 2*x^3 + 2*x - 1. %C A357463 The other (complex) roots are w1*((1 + (1/9)*sqrt(129))/4)^(1/3) + ((1 - (1/9)*sqrt(129))/4)^(1/3) = -0.2119268995... + 1.0652413023...*i, and its complex conjugate, where w1 = (-1 + sqrt(3))/2 = exp((2/3)*Pi*i). %C A357463 Using hyperbolic functions these roots are -(1/3)*sqrt(3)*(sinh((1/3)*arcsinh((3/4)*sqrt(3))) - sqrt(3)*cosh((1/3)*arcsinh((3/4)*sqrt(3)))*i), and its complex conjugate. %F A357463 r = ((1 +(1/9)*sqrt(129))/4)^(1/3) - (1/3)*((1 + (1/9)*sqrt(129))/4)^(-1/3). %F A357463 r = ((1 + (1/9)*sqrt(129))/4)^(1/3) + w1*((1 - (1/9)*sqrt(129))/4)^(1/3), where w1 = (-1 + sqrt(3))/2, one of the complex roots of x^3 - 1. %F A357463 r = (2/3)*sqrt(3)*sinh((1/3)*arcsinh((3/4)*sqrt(3))). %e A357463 0.423853799069783271378040062625515233676388197185177540823008396819954728... %t A357463 RealDigits[x /. FindRoot[2*x^3 + 2*x - 1, {x, 1}, WorkingPrecision -> 100]][[1]] (* _Amiram Eldar_, Sep 29 2022 *) %Y A357463 Cf. A316711 (Comment). %K A357463 nonn,cons,easy %O A357463 0,1 %A A357463 _Wolfdieter Lang_, Sep 29 2022