A357474 Squarely correct numbers.
1, 4, 9, 11, 14, 16, 19, 25, 36, 41, 44, 49, 64, 81, 91, 94, 99, 100, 111, 114, 116, 119, 121, 125, 136, 141, 144, 149, 161, 164, 169, 181, 191, 194, 196, 199, 225, 251, 254, 256, 259, 289, 324, 361, 364, 369, 400, 411, 414, 416, 419, 425, 436, 441, 444, 449, 464
Offset: 1
Examples
14401 is not a term, but 14411 is.
Links
- George Berzsenyi, Consecutively and Squarely Correct (P439), Math Horizons, Vol. 30, Issue 1, The Playground, August 2022.
Programs
-
PARI
is(n)=if(n<11, issquare(n), n%10, my(d=digits(n)); for(i=1,#d, if(issquare(n%10^i) && d[#d+1-i] && is(n\10^i), return(1))); 0, my(k=valuation(n,10)); k%2==0 && is(n/10^k)) \\ Charles R Greathouse IV, Oct 04 2022
-
Python
from sympy.ntheory.primetest import is_square def ok(n): if is_square(n): return True s = str(n) return any(s[i]!="0" and ok(int(s[:i])) and ok(int(s[i:])) for i in range(1, len(s))) print([k for k in range(1, 465) if ok(k)]) # Michael S. Branicky, Oct 03 2022
Formula
5n/3 < a(n) << n^k for n > 1, where k = log 10/log 3 = 2.0959.... - Charles R Greathouse IV, Oct 03 2022
Comments