This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357485 #6 Oct 02 2022 10:33:45 %S A357485 1,2,20,42,45,105,110,125,176,182,231,245,312,374,396,429,494,605,663, %T A357485 680,702,780,782,845,891,969,1064,1088,1100,1102,1311,1426,1428,1445, %U A357485 1530,1755,1805,1820,1824,1950,2001,2024,2146,2156,2394,2448,2475,2508,2542 %N A357485 Heinz numbers of integer partitions with the same length as reverse-alternating sum. %C A357485 The Heinz number of a partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). This gives a bijective correspondence between positive integers and integer partitions. %C A357485 The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^i y_i. %e A357485 The terms together with their prime indices begin: %e A357485 1: {} %e A357485 2: {1} %e A357485 20: {1,1,3} %e A357485 42: {1,2,4} %e A357485 45: {2,2,3} %e A357485 105: {2,3,4} %e A357485 110: {1,3,5} %e A357485 125: {3,3,3} %e A357485 176: {1,1,1,1,5} %e A357485 182: {1,4,6} %e A357485 231: {2,4,5} %e A357485 245: {3,4,4} %e A357485 312: {1,1,1,2,6} %e A357485 374: {1,5,7} %e A357485 396: {1,1,2,2,5} %t A357485 primeMS[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A357485 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A357485 Select[Range[100],PrimeOmega[#]==ats[primeMS[#]]&] %Y A357485 The version for compositions is A357184, counted by A357182. %Y A357485 These partitions are counted by A357189. %Y A357485 For absolute value we have A357486, counted by A357487. %Y A357485 A000041 counts partitions, strict A000009. %Y A357485 A000712 up to 0's counts partitions w sum = twice alt sum, ranked A349159. %Y A357485 A001055 counts partitions with product equal to sum, ranked by A301987. %Y A357485 A006330 up to 0's counts partitions w sum = twice rev-alt sum, rank A349160. %Y A357485 Cf. A004526, A025047, A051159, A131044, A262046, A357136. %K A357485 nonn %O A357485 1,2 %A A357485 _Gus Wiseman_, Oct 01 2022