This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357487 #5 Oct 02 2022 10:33:35 %S A357487 1,1,0,0,0,1,0,2,0,4,0,5,0,9,0,13,0,23,0,34,0,54,0,78,0,120,0,170,0, %T A357487 252,0,358,0,517,0,725,0,1030,0,1427,0,1992,0,2733,0,3759,0,5106,0, %U A357487 6946,0,9345,0,12577,0,16788,0,22384,0,29641,0 %N A357487 Number of integer partitions of n with the same length as reverse-alternating sum. %C A357487 A partition of n is a weakly decreasing sequence of positive integers summing to n. %C A357487 The reverse-alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^i y_i. %e A357487 The a(1) = 1 through a(13) = 9 partitions: %e A357487 1 . . . 311 . 322 . 333 . 443 . 553 %e A357487 421 432 542 652 %e A357487 531 641 751 %e A357487 51111 52211 52222 %e A357487 62111 53311 %e A357487 62221 %e A357487 63211 %e A357487 73111 %e A357487 7111111 %t A357487 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A357487 Table[Length[Select[IntegerPartitions[n],Length[#]==ats[Reverse[#]]&]],{n,0,30}] %Y A357487 For product equal to sum we have A001055, compositions A335405. %Y A357487 The version for compositions is A357182, reverse ranked by A357184. %Y A357487 The reverse version is A357189, ranked by A357486. %Y A357487 These partitions are ranked by A357485. %Y A357487 Removing zeros gives A357488. %Y A357487 A000041 counts partitions, strict A000009. %Y A357487 A025047 counts alternating compositions. %Y A357487 A103919 counts partitions by alternating sum, full triangle A344651. %Y A357487 A357136 counts compositions by alternating sum, full triangle A097805. %Y A357487 Cf. A004526, A051159, A114220, A131044, A262046, A262977, A301987, A357183. %K A357487 nonn %O A357487 0,8 %A A357487 _Gus Wiseman_, Oct 01 2022