This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357488 #11 Oct 04 2022 08:40:18 %S A357488 1,0,1,2,4,5,9,13,23,34,54,78,120,170,252,358,517,725,1030,1427,1992, %T A357488 2733,3759,5106,6946,9345,12577,16788,22384,29641,39199,51529,67626, %U A357488 88307,115083,149332,193383,249456,321134,411998,527472,673233,857539,1089223,1380772 %N A357488 Number of integer partitions of 2n - 1 with the same length as alternating sum. %C A357488 A partition of n is a weakly decreasing sequence of positive integers summing to n. %C A357488 The alternating sum of a sequence (y_1,...,y_k) is Sum_i (-1)^(i-1) y_i. %F A357488 a(n) = A357189(2n - 1). %e A357488 The a(1) = 1 through a(7) = 9 partitions: %e A357488 (1) . (311) (322) (333) (443) (553) %e A357488 (421) (432) (542) (652) %e A357488 (531) (641) (751) %e A357488 (51111) (52211) (52222) %e A357488 (62111) (53311) %e A357488 (62221) %e A357488 (63211) %e A357488 (73111) %e A357488 (7111111) %t A357488 ats[y_]:=Sum[(-1)^(i-1)*y[[i]],{i,Length[y]}]; %t A357488 Table[Length[Select[IntegerPartitions[n],Length[#]==ats[#]&]],{n,1,30,2}] %Y A357488 For product equal to sum we have A001055, compositions A335405. %Y A357488 The version for compositions appears to be A222763, odd version of A357182. %Y A357488 These are the odd-indexed terms of A357189, ranked by A357486. %Y A357488 These partitions are ranked by the odd-sum portion of A357485. %Y A357488 Except at the start, alternately adding zeros gives A357487. %Y A357488 A000041 counts partitions, strict A000009. %Y A357488 A025047 counts alternating compositions. %Y A357488 A103919 counts partitions by alternating sum, full triangle A344651. %Y A357488 A357136 counts compositions by alternating sum, full triangle A097805. %Y A357488 Cf. A004526, A051159, A114220, A131044, A262046, A262977, A357183, A357184. %K A357488 nonn %O A357488 1,4 %A A357488 _Gus Wiseman_, Oct 02 2022 %E A357488 More terms from _Alois P. Heinz_, Oct 04 2022