This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357489 #11 Nov 03 2022 05:41:43 %S A357489 133,1034,4113,8212,32802,65576,131137,262212,524368,1048706,2097288, %T A357489 4194464,4194561,8388868,16777488,33554752,33554946,67109384, %U A357489 134218272,134218753,268436096,268436484,536871952,1073742912,1073743874,2147484928,2147485704,4294969376 %N A357489 Numbers k such that the k-th composition in standard order is a triple (w,x,y) such that 2w = 3x + 4y. %C A357489 A composition of n is a finite sequence of positive integers summing to n. The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A357489 Chai Wah Wu, <a href="/A357489/b357489.txt">Table of n, a(n) for n = 1..10000</a> %H A357489 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %e A357489 The terms together with the corresponding standard compositions begin: %e A357489 133: (5,2,1) %e A357489 1034: (7,2,2) %e A357489 4113: (8,4,1) %e A357489 8212: (9,2,3) %e A357489 32802: (10,4,2) %e A357489 65576: (11,2,4) %e A357489 131137: (11,6,1) %e A357489 262212: (12,4,3) %e A357489 524368: (13,2,5) %t A357489 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A357489 Select[Range[0,10000],Length[stc[#]]==3&&2*stc[#][[1]]==3*stc[#][[2]]+4*stc[#][[3]]&] %o A357489 (Python) %o A357489 from itertools import count, islice %o A357489 def A357489_gen(): # generator of terms %o A357489 for n in count(1): %o A357489 yield from sorted((1<<n-1)+(1<<x+(y:=m//6)-1)+(1<<y-1) for x in range(1,n) if (m:=2*n-5*x)>0 and 6*(n-x)>m and m%6==0) %o A357489 A357489_list = list(islice(A357489_gen(),40)) # _Chai Wah Wu_, Nov 02 2022 %Y A357489 See link for sequences related to standard compositions. %Y A357489 By sum, these triples appear to be counted by A008676. %Y A357489 The unordered version is A358102, counted by A357849. %Y A357489 A011782 counts compositions. %Y A357489 A066099 lists the standard compositions. %Y A357489 Cf. A000120, A029837, A029931, A070939, A133494. %K A357489 nonn %O A357489 1,1 %A A357489 _Gus Wiseman_, Nov 02 2022 %E A357489 a(10)-a(28) from _Chai Wah Wu_, Nov 02 2022