This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357501 #24 Mar 03 2023 20:24:19 %S A357501 0,3,4,8,12,16,24,31,38,47,60,71,82,95,112,127,142 %N A357501 Length of longest induced cycle in the n X n king graph. %C A357501 The largest number of nodes of an induced path (instead of cycle) in the n X n king graph is A000982(n) = ceiling(n^2/2) (Beluhov 2023). - _Pontus von Brömssen_, Jan 30 2023 %D A357501 Donald E. Knuth, The Art of Computer Programming, Volume 4B, Combinatorial Algorithms, Part 2, Addison-Wesley, 2023. See exercise 7.2.2.1-172 and its solution. %H A357501 Nikolai Beluhov, <a href="https://arxiv.org/abs/2301.01152">Snake paths in king and knight graphs</a>, arXiv:2301.01152 [math.CO], 2023. %H A357501 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/KingGraph.html">King Graph</a>. %H A357501 Wikipedia, <a href="https://en.wikipedia.org/wiki/Induced_path">Induced path</a> %F A357501 From _Pontus von Brömssen_, Jan 30 2023: (Start) %F A357501 Beluhov (2023) proves that %F A357501 a(n) = n^2/2-1 if n == 0 (mod 4) and n >= 8; %F A357501 a(n) = (n^2-1)/2 if n == 3 (mod 4); %F A357501 and says that experimental data suggests that perhaps %F A357501 a(n) = (n^2-5)/2 if n == 1 (mod 4) and n >= 13; %F A357501 a(n) = n^2/2-3 if n == 2 (mod 4) and n >= 14. %F A357501 (End) %e A357501 Longest induced cycles for 6 <= n <= 8: %e A357501 . X X X X . . X X X X X . . X X X X X X . %e A357501 X . . . . X X . . . . . X X . . . . . . X %e A357501 X . . . . X X . . X . . X X . . X X . . X %e A357501 X . . . . X X . X . X . X X . X . . X . X %e A357501 X . . . . X X . X . X . X X . . X . X . X %e A357501 . X X X X . X . X . X . X X . . X . X . X %e A357501 . X . . . X . X . . X . X . X %e A357501 . X X . . . X . %Y A357501 Cf. A000982, A165143, A357357, A361171. %K A357501 nonn,more %O A357501 1,2 %A A357501 _Pontus von Brömssen_, Oct 01 2022 %E A357501 a(9)-a(17) from _Andrew Howroyd_, Mar 03 2023