cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357507 a(n) = A005259(n)^5 * (A005259(n-1))^7.

This page as a plain text file.
%I A357507 #9 Nov 06 2022 12:24:03
%S A357507 3125,161958718203125,69598400094777710760545478125,
%T A357507 514885225734532980507136994998009584838203125,
%U A357507 15708056924221066705174364772957342407662356116035885781253125,1125221282019374727979322420623179115437017599670596496532725068048858642578125
%N A357507 a(n) = A005259(n)^5 * (A005259(n-1))^7.
%C A357507 The Apéry numbers A(n) = A005259(n) satisfy the supercongruences A(p) == 5 (mod p^3) and A(p-1) == 1 (mod p^3) for all primes p >= 5 (see, for example, Straub, Introduction). It follows that a(p) == 3125 (mod p^3) for all primes p >= 5. We conjecture that, in fact, the stronger congruence a(p) == 3125 (mod p^5) holds for all primes p >= 3 (checked up to p = 251). Compare with the congruence A(p) + 7*A(p-1) == 12 (mod p^5) conjectured to hold for all primes p >= 5. See A212334.
%C A357507 Conjecture: a(p^r) == a(p^(r-1)) ( mod p^(3*r+3) ) for r >= 2 and all primes p >= 5. - _Peter Bala_, Oct 26 2022
%H A357507 A. Straub, <a href="https://arxiv.org/abs/1401.0854">Multivariate Apéry numbers and supercongruences of rational functions</a>, arXiv:1401.0854 [math.NT] (2014).
%p A357507 A005259 := n -> add(binomial(n,k)^2*binomial(n+k,k)^2, k = 0..n):
%p A357507 seq(A005259(n)^5 * A005259(n-1)^7, n = 1..10);
%Y A357507 Cf. A005259, A212334, A339946, A352655, A357506, A357508, A357509, A357567, A357568, A357569, A357956, A357957, A357958, A357959.
%K A357507 nonn,easy
%O A357507 1,1
%A A357507 _Peter Bala_, Oct 01 2022