cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357514 Minimum number of transversals in an orthogonal diagonal Latin square of order n.

This page as a plain text file.
%I A357514 #33 Oct 20 2024 20:13:02
%S A357514 1,0,0,8,15,0,23,16,132
%N A357514 Minimum number of transversals in an orthogonal diagonal Latin square of order n.
%C A357514 Orthogonal diagonal Latin squares is a diagonal Latin squares that have at least one orthogonal diagonal mate.
%C A357514 a(10) <= 652, a(11) <= 2091, a(12) <= 6240. - _Eduard I. Vatutin_, Oct 01 2022, updated Oct 21 2024
%C A357514 Every diagonal Latin square is a Latin square and every orthogonal diagonal Latin square is a diagonal Latin square, so 0 <= A287645(n) <= a(n) <= A287644(n) <= A090741(n). - _Eduard I. Vatutin_, Feb 17 2023
%H A357514 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1709">About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11</a> (in Russian).
%H A357514 Eduard I. Vatutin, <a href="/A357514/a357514_1.txt">Best known examples</a>
%H A357514 E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, and I. I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_small_orders_thesis.pdf">On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order</a>, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17. (in Russian)
%H A357514 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>.
%Y A357514 Cf. A287644, A287645, A344105, A350585.
%K A357514 nonn,more,hard
%O A357514 1,4
%A A357514 _Eduard I. Vatutin_, Oct 01 2022