This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357514 #33 Oct 20 2024 20:13:02 %S A357514 1,0,0,8,15,0,23,16,132 %N A357514 Minimum number of transversals in an orthogonal diagonal Latin square of order n. %C A357514 Orthogonal diagonal Latin squares is a diagonal Latin squares that have at least one orthogonal diagonal mate. %C A357514 a(10) <= 652, a(11) <= 2091, a(12) <= 6240. - _Eduard I. Vatutin_, Oct 01 2022, updated Oct 21 2024 %C A357514 Every diagonal Latin square is a Latin square and every orthogonal diagonal Latin square is a diagonal Latin square, so 0 <= A287645(n) <= a(n) <= A287644(n) <= A090741(n). - _Eduard I. Vatutin_, Feb 17 2023 %H A357514 Eduard I. Vatutin, <a href="https://vk.com/wall162891802_1709">About the spectra of numerical characteristics of orthogonal diagonal Latin squares of orders 1-11</a> (in Russian). %H A357514 Eduard I. Vatutin, <a href="/A357514/a357514_1.txt">Best known examples</a> %H A357514 E. I. Vatutin, N. N. Nikitina, M. O. Manzuk, A. M. Albertyan, and I. I. Kurochkin, <a href="http://evatutin.narod.ru/evatutin_spectra_t_dt_i_o_small_orders_thesis.pdf">On the construction of spectra of fast-computable numerical characteristics for diagonal Latin squares of small order</a>, Intellectual and Information Systems (Intellect - 2021), Tula, 2021, pp. 7-17. (in Russian) %H A357514 <a href="/index/La#Latin">Index entries for sequences related to Latin squares and rectangles</a>. %Y A357514 Cf. A287644, A287645, A344105, A350585. %K A357514 nonn,more,hard %O A357514 1,4 %A A357514 _Eduard I. Vatutin_, Oct 01 2022