This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357542 #23 Oct 14 2022 17:57:03 %S A357542 1,0,2,0,120,40,0,21600,37440,3680,0,8553600,38966400,20592000,880000, %T A357542 0,6329664000,57708288000,79491456000,19269888000,435776000,0, %U A357542 7852204800000,123646051584000,335872728576000,213892766208000,28748332800000,386949376000,0,15132769090560000,374841224017920000,1730103155573760000,2169194182594560000,774705298498560000,64544356546560000,560034421760000 %N A357542 Coefficients T(n,k) of x^(3*n)*r^(3*k)/(3*n)! in power series D(x,r) = 1 + r^3 * Integral S(x,r)^2 * D(x,r)^2 dx such that C(x,r)^3 - S(x,r)^3 = 1 and D(x,r)^3 - r^3*S(x,r)^3 = 1, as a triangle read by rows. %C A357542 Related to Dixon elliptic function cm(x,0) (cf. A104134). %C A357542 Equals a row reversal of triangle A357541 which describes the related function C(x,r). %H A357542 Paul D. Hanna, <a href="/A357542/b357542.txt">Table of n, a(n) for n = 0..2555</a> %F A357542 Generating function D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n) * r^(3*k) / (3*n)! and related functions S(x,r) and C(x,r) satisfy the following relations. %F A357542 For brevity, some formulas here will use S = S(x,r), C = C(x,r), and D = D(x,r). %F A357542 (1.a) C(x,r)^3 - S(x,r)^3 = 1. %F A357542 (1.b) D(x,r)^3 - r^3 * S(x,r)^3 = 1. %F A357542 (1.c) D(x,r)^3 - r^3 * C(x,r)^3 = 1 - r^3. %F A357542 Integral formulas. %F A357542 (2.a) S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx. %F A357542 (2.b) C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx. %F A357542 (2.c) D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx. %F A357542 (2.d) D(x,r)^3 = 1 + r^3 * Integral 3 * S(x,r)^2 * C(x,r)^2 * D(x,r)^2 dx. %F A357542 Derivatives. %F A357542 (3.a) d/dx S(x,r) = C(x,r)^2 * D(x,r)^2. %F A357542 (3.b) d/dx C(x,r) = S(x,r)^2 * D(x,r)^2. %F A357542 (3.c) d/dx D(x,r) = r^3 * S(x,r)^2 * C(x,r)^2. %F A357542 Exponential formulas. %F A357542 (4.a) C - S = exp( -Integral (C + S) * D^2 dx ). %F A357542 (4.b) D - r*S = exp( -r * Integral (D + r*S) * C^2 dx ). %F A357542 (4.c) C + S = sqrt(C^2 - S^2) * exp( Integral D^2/(C^2 - S^2) dx ). %F A357542 (4.d) D + r*S = sqrt(D^2 - r^2*S^2) * exp( r * Integral C^2/(D^2 - r^2*S^2) dx ). %F A357542 (5.a) C^2 - S^2 = exp( -2 * Integral S*C/(C + S) * D^2 dx ). %F A357542 (5.b) D^2 - r^2*S^2 = exp( -2*r^2 * Integral S*D/(D + r*S) * C^2 dx ). %F A357542 (5.c) C^2 + S^2 = exp( 2 * Integral S*C*(C + S)/(C^2 + S^2) * D^2 dx ). %F A357542 (5.d) D^2 + r^2*S^2 = exp( 2*r^2 * Integral S*D*(D + r*S)/(D^2 + r^2*S^2) * C^2 dx ). %F A357542 Hyperbolic functions. %F A357542 (6.a) C = sqrt(C^2 - S^2) * cosh( Integral D^2/(C^2 - S^2) dx ). %F A357542 (6.b) S = sqrt(C^2 - S^2) * sinh( Integral D^2/(C^2 - S^2) dx ). %F A357542 (6.c) D = sqrt(D^2 - r^2*S^2) * cosh( r * Integral C^2/(D^2 - r^2*S^2) dx ). %F A357542 (6.d) r*S = sqrt(D^2 - r^2*S^2) * sinh( r * Integral C^2/(D^2 - r^2*S^2) dx ). %F A357542 Other formulas. %F A357542 (7) S(x,r) = Series_Reversion( Integral ( (1 + x^3)^2 * (1 + r^3*x^3)^2 )^(-1/3) dx ). %F A357542 (8.a) T(n,n) = (-1)^n * A104134(n). %F A357542 (8.b) Sum_{k=0..n} T(n,k) = (3*n)!/(3^n*n!) * Product_{k=1..n} (3*k - 2) = A178575(n), for n >= 0. %e A357542 E.g.f.: D(x,r) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^(3*n) * r^(3*k) / (3*n)! begins: %e A357542 D(x,r) = 1 + r^3 * Integral S(x,r)^2 * C(x,r)^2 dx = 1 + 2*r^3*x^3/3! + (120*r^3 + 40*r^6)*x^6/6! + (21600*r^3 + 37440*r^6 + 3680*r^9)*x^9/9! + (8553600*r^3 + 38966400*r^6 + 20592000*r^9 + 880000*r^12)*x^12/12! + (6329664000*r^3 + 57708288000*r^6 + 79491456000*r^9 + 19269888000*r^12 + 435776000*r^15)*x^15/15! + (7852204800000*r^3 + 123646051584000*r^6 + 335872728576000*r^9 + 213892766208000*r^12 + 28748332800000*r^15 + 386949376000*r^18)*x^18/18! + (15132769090560000*r^3 + 374841224017920000*r^6 + 1730103155573760000*r^9 + 2169194182594560000*r^12 + 774705298498560000*r^15 + 64544356546560000*r^18 + 560034421760000*r^21)*x^21/21! + ... %e A357542 This table of coefficients T(n,k) of x^(3*n) * r^(3*k) / (3*n)! in C(x,r) for n >= 0, k = 0..n, begins: %e A357542 n = 0: [1]; %e A357542 n = 1: [0, 2]; %e A357542 n = 2: [0, 120, 40]; %e A357542 n = 3: [0, 21600, 37440, 3680]; %e A357542 n = 4: [0, 8553600, 38966400, 20592000, 880000]; %e A357542 n = 5: [0, 6329664000, 57708288000, 79491456000, 19269888000, 435776000]; %e A357542 n = 6: [0, 7852204800000, 123646051584000, 335872728576000, 213892766208000, 28748332800000, 386949376000]; %e A357542 n = 7: [0, 15132769090560000, 374841224017920000, 1730103155573760000, 2169194182594560000, 774705298498560000, 64544356546560000, 560034421760000]; %e A357542 n = 8: [0, 42815371615948800000, 1563368171330211840000, 11169319418477383680000, 23676862831649280000000, 16693947940315852800000, 3741268129758720000000, 208114576947425280000, 1233482823823360000]; %e A357542 ... %e A357542 in which the main diagonal gives the unsigned coefficients in the Dixon elliptic function cm(x,0) (cf. A104134). %e A357542 RELATED SERIES. %e A357542 S(x,r) = Integral C(x,r)^2 * D(x,r)^2 dx = x + (4 + 4*r^3)*x^4/4! + (160 + 800*r^3 + 160*r^6)*x^7/7! + (20800 + 292800*r^3 + 292800*r^6 + 20800*r^9)*x^10/10! + (6476800 + 191910400*r^3 + 500121600*r^6 + 191910400*r^9 + 6476800*r^12)*x^13/13! + (3946624000 + 210590336000*r^3 + 1091343616000*r^6 + 1091343616000*r^9 + 210590336000*r^12 + 3946624000*r^15)*x^16/16! + (4161608704000 + 361556726784000*r^3 + 3216369361920000*r^6 + 6333406238720000*r^9 + 3216369361920000*r^12 + 361556726784000*r^15 + 4161608704000*r^18)*x^19/19! + (6974121256960000 + 919365914368000000*r^3 + 12789764316088320000*r^6 + 42703786876467200000*r^9 + 42703786876467200000*r^12 + 12789764316088320000*r^15 + 919365914368000000*r^18 + 6974121256960000*r^21)*x^22/22! + ... %e A357542 where D(x,r)^3 - r^3 * S(x,r)^3 = 1. %e A357542 C(x,r) = 1 + Integral S(x,r)^2 * D(x,r)^2 dx = 1 + 2*x^3/3! + (40 + 120*r^3)*x^6/6! + (3680 + 37440*r^3 + 21600*r^6)*x^9/9! + (880000 + 20592000*r^3 + 38966400*r^6 + 8553600*r^9)*x^12/12! + (435776000 + 19269888000*r^3 + 79491456000*r^6 + 57708288000*r^9 + 6329664000*r^12)*x^15/15! + (386949376000 + 28748332800000*r^3 + 213892766208000*r^6 + 335872728576000*r^9 + 123646051584000*r^12 + 7852204800000*r^15)*x^18/18! + (560034421760000 + 64544356546560000*r^3 + 774705298498560000*r^6 + 2169194182594560000*r^9 + 1730103155573760000*r^12 + 374841224017920000*r^15 + 15132769090560000*r^18)*x^21/21! + ... %e A357542 where D(x,r)^3 - r^3 * C(x,r)^3 = (1 - r^3). %o A357542 (PARI) {T(n,k) = my(S=x,C=1,D=1); for(i=0,n, %o A357542 S = intformal( C^2*D^2 +O(x^(3*n+3))); %o A357542 C = 1 + intformal( S^2*D^2); %o A357542 D = 1 + r^3*intformal( S^2*C^2); ); %o A357542 (3*n)!*polcoeff( polcoeff(D,3*n,x),3*k,r)} %o A357542 for(n=0,10, for(k=0,n, print1( T(n,k),", "));print("")) %o A357542 (PARI) /* Using Series Reversion for S(x,r) (faster) */ %o A357542 {T(n,k) = my(S = serreverse( intformal( 1/((1 + x^3)^2*(1 + r^3*x^3)^2 +O(x^(3*n+3)) )^(1/3) )) ); %o A357542 (3*n)!*polcoeff( polcoeff((1 + r^3*S^3)^(1/3),3*n,x),3*k,r)} %o A357542 for(n=0,10, for(k=0,n, print1( T(n,k),", "));print("")) %Y A357542 Cf. A104134 (cm(x,0)), A357540 (S(x,r)), A357541 (C(x,r)), A178575 (row sums), A357545 (central terms). %Y A357542 Cf. A357802. %K A357542 nonn,tabl %O A357542 0,3 %A A357542 _Paul D. Hanna_, Oct 09 2022