This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357547 #18 Dec 04 2022 07:34:08 %S A357547 1,2,9,38,176,832,4039,19938,99861,506042,2590099,13370898,69540016, %T A357547 364028992,1916585714,10142059868,53911982971,287736310102, %U A357547 1541243386819,8282387269058,44638363790176,241216694913632,1306608966475854,7092980525443588,38581011402034156 %N A357547 a(n) = coefficient of x^n in A(x) such that: A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ). %C A357547 Radius of convergence is r = (sqrt(41) - 5)/8, where r = r^2/(1 - 4*r - 4*r^2), with A(r) = 1. %C A357547 Related identities: %C A357547 (1) F(x)^2 = F( x^2/(1 - 4*x + 6*x^2) ) when F(x) = x/(1-2*x). %C A357547 (2) C(x)^2 = C( x^2/(1 - 4*x + 4*x^2) ) when C(x) = (1-2*x - sqrt(1-4*x))/(2*x) is a g.f. of the Catalan numbers (A000108). %C A357547 More generally, if %C A357547 F(x)^2 = F( x^2/(1 - 2*a*x + 2*(a^2 - b)*x^2) ), %C A357547 then %C A357547 F( x/(1 + a*x + b*x^2) )^2 = F( x^2/(1 + a^2*x^2 + b^2*x^4) ); %C A357547 here, a = 2, b = 6. %H A357547 Paul D. Hanna, <a href="/A357547/b357547.txt">Table of n, a(n) for n = 1..520</a> %F A357547 G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies: %F A357547 (1) A( x/(1 + 2*x + 6*x^2) )^2 = A( x^2/(1 + 2^2*x^2 + 6^2*x^4) ). %F A357547 (2) A(x) = -A( -x/(1 - 4*x) ). %F A357547 (3.a) A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ). %F A357547 (3.b) A(x)^2 = -A( -x^2/(1 - 4*x - 8*x^2) ). %F A357547 (4.a) A( x/(1 + 2*x) )^2 = A( x^2/(1 - 8*x^2) ). %F A357547 (4.b) A( x/(1 + 2*x) )^2 = -A( -x^2/(1 - 12*x^2) ). %F A357547 (4.c) A( x/(1 + 2*x) )^2 = A( -x/(1 - 2*x) )^2. %e A357547 G.f.: A(x) = x + 2*x^2 + 9*x^3 + 38*x^4 + 176*x^5 + 832*x^6 + 4039*x^7 + 19938*x^8 + 99861*x^9 + 506042*x^10 + 2590099*x^11 + 13370898*x^12 + ... %e A357547 where A(x)^2 = A( x^2/(1 - 4*x - 4*x^2) ). %e A357547 RELATED SERIES. %e A357547 A(x)^2 = x^2 + 4*x^3 + 22*x^4 + 112*x^5 + 585*x^6 + 3052*x^7 + 16018*x^8 + 84384*x^9 + 446384*x^10 + 2370240*x^11 + 12631104*x^12 + ... %e A357547 (x*A(x))^(1/2) = x + x^2 + 4*x^3 + 15*x^4 + 65*x^5 + 291*x^6 + 1356*x^7 + 6474*x^8 + 31555*x^9 + 156315*x^10 + 784924*x^11 + ... + A357785(n)*x^n + ... %e A357547 x/Series_Reversion(A(x)) = 1 + 2*x + 5*x^2 - 10*x^4 + 50*x^6 - 305*x^8 + 2025*x^10 - 14400*x^12 + 107500*x^14 - 829415*x^16 + 6559700*x^18 - 52908950*x^20 + ... %o A357547 (PARI) {a(n) = my(A=x); for(i=1, #binary(n+1), %o A357547 A = sqrt( subst(A, x, x^2/(1 - 4*x - 4*x^2 +x*O(x^n)) ) ) %o A357547 ); polcoeff(A, n)} %o A357547 for(n=1, 40, print1(a(n), ", ")) %Y A357547 Cf. A357785, A264224, A274483, A274484, A357548. %K A357547 nonn %O A357547 1,2 %A A357547 _Paul D. Hanna_, Dec 01 2022