A357553 a(n) = A000045(n)*A000045(n+1) mod A000032(n).
0, 0, 2, 2, 1, 7, 14, 12, 9, 46, 98, 80, 64, 313, 674, 546, 441, 2143, 4622, 3740, 3025, 14686, 31682, 25632, 20736, 100657, 217154, 175682, 142129, 689911, 1488398, 1204140, 974169, 4728718, 10201634, 8253296, 6677056, 32411113, 69923042, 56568930, 45765225, 222149071, 479259662, 387729212
Offset: 0
Keywords
Examples
a(3) = A000045(3)*A000045(4) mod A000032(3) = 2*3 mod 4 = 2.
Links
- Robert Israel, Table of n, a(n) for n = 0..4761
Programs
-
Maple
luc:= n -> combinat:-fibonacci(n+1) + combinat:-fibonacci(n-1): f:= proc(n) local m; m:= n mod 4; if m = 0 then (luc(n)-2)/5 elif m = 1 then (3*luc(n)+2)/5 elif m = 2 then (4*luc(n)-2)/5 else (2*luc(n)+2)/5 fi end proc: f(1):= 0: map(f, [$0..50]);
-
Mathematica
a[n_] := Mod[Fibonacci[n] * Fibonacci[n + 1], LucasL[n]]; Array[a, 50, 0] (* Amiram Eldar, Oct 03 2022 *)
Formula
G.f. (2 + 2*x + 3*x^2 + 7*x^3 + 3*x^4 + 2*x^5 + x^6)*x^2/(1 + x^2 - x^3 - 5*x^4 - 3*x^5 - 2*x^6 - x^7).
For n == 0 (mod 4), a(n) = (A000032(n) - 2)/5.
For n == 1 (mod 4) and n > 1, a(n) = (3*A000032(n) + 2)/5.
For n == 2 (mod 4), a(n) = (4*A000032(n) - 2)/5.
For n == 3 (mod 4), a(n) = (2*A000032(n) + 2)/5.
Comments