cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357553 a(n) = A000045(n)*A000045(n+1) mod A000032(n).

Original entry on oeis.org

0, 0, 2, 2, 1, 7, 14, 12, 9, 46, 98, 80, 64, 313, 674, 546, 441, 2143, 4622, 3740, 3025, 14686, 31682, 25632, 20736, 100657, 217154, 175682, 142129, 689911, 1488398, 1204140, 974169, 4728718, 10201634, 8253296, 6677056, 32411113, 69923042, 56568930, 45765225, 222149071, 479259662, 387729212
Offset: 0

Views

Author

J. M. Bergot and Robert Israel, Oct 02 2022

Keywords

Comments

a(n) is the product of the n-th and (n+1)th Fibonacci numbers mod the n-th Lucas number.

Examples

			a(3) = A000045(3)*A000045(4) mod A000032(3) = 2*3 mod 4 = 2.
		

Crossrefs

Programs

  • Maple
    luc:= n -> combinat:-fibonacci(n+1) + combinat:-fibonacci(n-1):
    f:= proc(n) local m;
      m:= n mod 4;
      if m = 0 then (luc(n)-2)/5
      elif m = 1 then (3*luc(n)+2)/5
      elif m = 2 then (4*luc(n)-2)/5
      else (2*luc(n)+2)/5
      fi
    end proc:
    f(1):= 0:
    map(f, [$0..50]);
  • Mathematica
    a[n_] := Mod[Fibonacci[n] * Fibonacci[n + 1], LucasL[n]]; Array[a, 50, 0] (* Amiram Eldar, Oct 03 2022 *)

Formula

G.f. (2 + 2*x + 3*x^2 + 7*x^3 + 3*x^4 + 2*x^5 + x^6)*x^2/(1 + x^2 - x^3 - 5*x^4 - 3*x^5 - 2*x^6 - x^7).
For n == 0 (mod 4), a(n) = (A000032(n) - 2)/5.
For n == 1 (mod 4) and n > 1, a(n) = (3*A000032(n) + 2)/5.
For n == 2 (mod 4), a(n) = (4*A000032(n) - 2)/5.
For n == 3 (mod 4), a(n) = (2*A000032(n) + 2)/5.