This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357576 #16 Oct 23 2022 11:27:26 %S A357576 0,2,8,17,28,46,63,87,112,142,173,204,244,287,333,378,428,485,540,602, %T A357576 661,737,802,869,947,1030,1118,1197,1278,1378,1469,1575,1670,1776, %U A357576 1889,1990,2108,2219,2353,2472,2587,2723,2854,3002,3135,3275,3424,3563,3721 %N A357576 Half area of the convex hull of {(x,y)| x,y integers and x^2 + y^2 < n^2}. %C A357576 a(n) is odd if there is an edge connecting two vertices (x,y) and (y,x), x > y > 0, such that x-y is odd. Otherwise, a(n) is even. a(n)/n^2 is not monotonous but tends to Pi/2. The convex hull has four symmetry axes: x=0, y=0, y=x, y=-x. Therefore it is sufficient to find the least area of a quarter polygon (multiplied by 2). The half area is an integer because the area of any convex polygon whose vertex coordinates are integers is a multiple of 1/2. %H A357576 Gerhard Kirchner, <a href="/A357576/a357576.pdf">Examples for n <= 13</a>. %F A357576 a(n) = A357575(n) - 2*floor(sqrt(2*n-1)) if n is a nonhypotenuse number (A004144). %e A357576 For n=4: 5+6+6 = 17 square units -> a(4)=17. %e A357576 _______ %e A357576 /|_|_|_|_|\ 5 %e A357576 |_|_|_|_|_|_| 6 %e A357576 |_|_|_|_|_|_| 6 %o A357576 (Maxima) %o A357576 block(nmax: 40, a: makelist(0,i,1,nmax), a[1]:0, %o A357576 for n from 2 thru nmax do %o A357576 (x0:0, y0:n, xa:0, ya:n, m1:0, m0:2, ar:0, %o A357576 while xa<ya do (y:y0, %o A357576 while m1<=m0 and xa<ya do %o A357576 (y:y-1, x1: sqrt(n^2-y^2-1), m1: (y0-y)/(x1-x0), %o A357576 if m1<=m0 then (x:floor(x1), m: (y0-y)/(x-x0), %o A357576 if m<m0 then (m0:m, xa:x, ya:y))), %o A357576 dar:xa*y0-ya*x0, if y0=n then dar:dar-xa, %o A357576 if xa<=ya then (x0:xa, y0:ya, m0:2, ar:ar+2*dar) else ar:ar+dar), %o A357576 a[n]: ar), a); %o A357576 (Python) %o A357576 from math import isqrt %o A357576 from sympy import convex_hull %o A357576 def A357576(n): return 0 if n == 1 else int(2*convex_hull(*[(0,0),(n-1,0)]+[(x,isqrt((n-x)*(n+x)-1)) for x in range(n)]).area) # _Chai Wah Wu_, Oct 23 2022 %Y A357576 Cf. A000328, A004144, A292276, A357575. %K A357576 nonn %O A357576 1,2 %A A357576 _Gerhard Kirchner_, Oct 05 2022