cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357581 Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.

This page as a plain text file.
%I A357581 #16 Oct 11 2022 01:01:57
%S A357581 1,2,3,4,5,9,8,7,25,21,16,10,49,27,81,32,11,50,33,625,147,64,13,98,39,
%T A357581 1250,171,729,128,14,121,51,2401,207,15625,903,256,17,169,55,4802,243,
%U A357581 31250,987,3025,512,19,242,57,14641,261,117649,1029,3249,6875
%N A357581 Square array read by antidiagonals of numbers whose symmetric representation of sigma consists only of parts that have width 1; column k indicates the number of parts and row n indicates the n-th number in increasing order in each of the columns.
%C A357581 This sequence is a permutation of A174905. Numbers in the even numbered columns of the table form A241008 and those in the odd numbered columns form A241010. The first row of the table is A318843.
%C A357581 This sequence is a subsequence of A240062 and each column in this sequence is a subsequence in the respective column of A240062.
%e A357581 The upper left hand 11 X 11 section of the table for a(n) <= 2*10^7:
%e A357581      1   2    3   4      5    6         7     8      9     10        11 ...
%e A357581   ----------------------------------------------------------------------
%e A357581      1   3    9  21     81  147       729   903   3025   6875     59049
%e A357581      2   5   25  27    625  171     15625   987   3249   7203   9765625
%e A357581      4   7   49  33   1250  207     31250  1029   4761  13203  19531250
%e A357581      8  10   50  39   2401  243    117649  1113   6561  13527       ...
%e A357581     16  11   98  51   4802  261    235298  1239   7569  14013       ...
%e A357581     32  13  121  55  14641  275   1771561  1265   8649  14499       ...
%e A357581     64  14  169  57  28561  279   3543122  1281  12321  14661       ...
%e A357581    128  17  242  65  29282  333   4826809  1375  14161  15471       ...
%e A357581    256  19  289  69  57122  363   7086244  1407  15129  15633       ...
%e A357581    512  22  338  85  58564  369   9653618  1491  16641  15957       ...
%e A357581   1024  23  361  87  83521  387  19307236  1533  17689  16119       ...
%e A357581   ...
%e A357581 Each column k > 1 contains odd and even numbers since, e.g., 5^(k-1) and 2 * 5^(k-1) belong to it.
%e A357581 Column 1: A000079, subsequence of A174973 = A238443, and of column 1 in A240062.
%e A357581 Column 2: A246955, subsequence of A239929; 78 is the smallest number not in A246955.
%e A357581 Column 3: A247687, subsequence of A279102; 15 is the smallest number not in A247687.
%e A357581   Odd numbers in column 3: A001248(k), k > 1.
%e A357581 Column 4: A264102, subsequence of A280107; 75 is the smallest number not in A264102.
%e A357581 Column 5: subsequence of A320066; 63 = A320066(1) is not in column 5.
%e A357581   Numbers in column 5 have the form 2^k * p^4 with p > 2 prime and 0 <= k < floor(log_2(p)).
%e A357581   Odd numbers in column 5: A030514(k), k > 1.
%e A357581 Column 6: subsequence of A320511; 189 is the smallest number not in column 6.
%e A357581   Smallest even number in column 6 is 5050.
%e A357581 Column 7: Numbers have the form 2^k * p^6 with p > 2 prime and 0 <= k < floor(log_2(p)).
%e A357581   Odd numbers in column 7: A030516(k), k > 1.
%e A357581 Numbers in the column numbered with the n-th prime p_n have the form: 2^k * p^(p_n - 1) with p > 2 prime and 0 <= k < floor(log_2(p_n)).
%t A357581 (* function a341969 and support functions are defined in A341969, A341970 and A341971 *)
%t A357581 width1Table[n_, {r_, c_}] := Module[{k, list=Table[{}, c], wL, wLen, pCount, colLen}, For[k=1, k<=n, k++, wL=a341969[k]; wLen=Length[wL]; pCount=(wLen+1)/2; If[pCount<=c&&Length[list[[pCount]]]<r&&SubsetQ[{0, 1}, Union[wL]], AppendTo[list[[pCount]], k]]]; Transpose[PadRight[list, {c, r},"..."]]]
%t A357581 a357581[n_, r_] := Module[{arr=width1Table[n, {r, r}], vec=Table[0, PolygonalNumber[r]], i, j}, For[i=1, i<=r, i++, For[j=r-i+1, j>=1, j--, vec[[PolygonalNumber[i+j-2]+j]]=arr[[i, j]]]]; vec]
%t A357581 a357581T[n_, r_] := TableForm[width1Table[n, {r, r}]]
%t A357581 a357581[120000, 10] (* sequence data - first 10 antidiagonals *)
%t A357581 a357581T[120000, 10] (* upper left hand 10x10 array *)
%t A357581 a357581T[20000000, 11] (* 11x11 array - very long computation time *)
%Y A357581 Cf. A000079, A001248, A030514, A030516, A174905, A174973, A237593, A238443, A239929, A241008, A241010, A246955, A247687, A264102, A279102, A280107, A318843, A320066, A320511, A341969, A341970, A341971.
%K A357581 nonn,tabl
%O A357581 1,2
%A A357581 _Hartmut F. W. Hoft_, Oct 04 2022