cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A357585 Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators.

This page as a plain text file.
%I A357585 #8 Oct 08 2022 07:44:07
%S A357585 1,0,1,0,2,1,0,7,4,1,0,32,18,6,1,0,166,92,33,8,1,0,926,509,188,52,10,
%T A357585 1,0,5419,2964,1113,328,75,12,1,0,32816,17890,6792,2078,520,102,14,1,
%U A357585 0,203902,110896,42436,13312,3520,772,133,16,1
%N A357585 Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators.
%C A357585 Also the matrix inverse of the signed version of A105475 with 1, 0, 0, 0, ... as column 0.
%e A357585 Triangle T(n, k) starts:
%e A357585 [0] 1;
%e A357585 [1] 0,      1;
%e A357585 [2] 0,      2,      1;
%e A357585 [3] 0,      7,      4,     1;
%e A357585 [4] 0,     32,     18,     6,     1;
%e A357585 [5] 0,    166,     92,    33,     8,    1;
%e A357585 [6] 0,    926,    509,   188,    52,   10,  1;
%e A357585 [7] 0,   5419,   2964,  1113,   328,   75,  12,   1;
%e A357585 [8] 0,  32816,  17890,  6792,  2078,  520, 102,  14,  1;
%e A357585 [9] 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1;
%p A357585 InvPMatrix := proc(dim, seqfun) local k, m, M, A;
%p A357585     if dim < 1 then return [] fi;
%p A357585     A := [seq(seqfun(i), i = 1..dim-1)];
%p A357585     M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1;
%p A357585     for m from 2 to dim do
%p A357585         M[m, m] := M[m - 1, m - 1] / A[1];
%p A357585         for k from m-1 by -1 to 2 do
%p A357585             M[m, k] := M[m - 1, k - 1] -
%p A357585                 add(A[i+1] * M[m, k + i], i = 1..m-k) / A[1]
%p A357585 od od; M end:
%p A357585 InvPMatrix(10, n -> [1, -2][irem(n-1, 2) + 1]);
%Y A357585 Cf. A108524 (column 1), A047891 (row sums), A105475.
%K A357585 nonn,tabl
%O A357585 0,5
%A A357585 _Peter Luschny_, Oct 08 2022