This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357585 #8 Oct 08 2022 07:44:07 %S A357585 1,0,1,0,2,1,0,7,4,1,0,32,18,6,1,0,166,92,33,8,1,0,926,509,188,52,10, %T A357585 1,0,5419,2964,1113,328,75,12,1,0,32816,17890,6792,2078,520,102,14,1, %U A357585 0,203902,110896,42436,13312,3520,772,133,16,1 %N A357585 Triangle read by rows. Inverse of the convolution triangle of A108524, the number of ordered rooted trees with n generators. %C A357585 Also the matrix inverse of the signed version of A105475 with 1, 0, 0, 0, ... as column 0. %e A357585 Triangle T(n, k) starts: %e A357585 [0] 1; %e A357585 [1] 0, 1; %e A357585 [2] 0, 2, 1; %e A357585 [3] 0, 7, 4, 1; %e A357585 [4] 0, 32, 18, 6, 1; %e A357585 [5] 0, 166, 92, 33, 8, 1; %e A357585 [6] 0, 926, 509, 188, 52, 10, 1; %e A357585 [7] 0, 5419, 2964, 1113, 328, 75, 12, 1; %e A357585 [8] 0, 32816, 17890, 6792, 2078, 520, 102, 14, 1; %e A357585 [9] 0, 203902, 110896, 42436, 13312, 3520, 772, 133, 16, 1; %p A357585 InvPMatrix := proc(dim, seqfun) local k, m, M, A; %p A357585 if dim < 1 then return [] fi; %p A357585 A := [seq(seqfun(i), i = 1..dim-1)]; %p A357585 M := Matrix(dim, shape=triangular[lower]); M[1, 1] := 1; %p A357585 for m from 2 to dim do %p A357585 M[m, m] := M[m - 1, m - 1] / A[1]; %p A357585 for k from m-1 by -1 to 2 do %p A357585 M[m, k] := M[m - 1, k - 1] - %p A357585 add(A[i+1] * M[m, k + i], i = 1..m-k) / A[1] %p A357585 od od; M end: %p A357585 InvPMatrix(10, n -> [1, -2][irem(n-1, 2) + 1]); %Y A357585 Cf. A108524 (column 1), A047891 (row sums), A105475. %K A357585 nonn,tabl %O A357585 0,5 %A A357585 _Peter Luschny_, Oct 08 2022