This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357588 #7 Oct 05 2022 02:53:51 %S A357588 1,-2,5,-11,6,146,-1295,7712,-36937,141514,-357676,-322973,12078666, %T A357588 -102218510,623243991,-3041134727,11440387382,-23657862864, %U A357588 -95377084665,1570488584608,-12255377466362,72288056416374,-340793435817068,1186234942871544,-1525020468715715 %N A357588 The compositional inverse of n -> n^[isprime(n)], where [b] is the Iverson bracket of b. %p A357588 # REVERT from N. J. A. Sloane's 'Transforms' (see the footer of the page). %p A357588 REVERT([seq(if isprime(k) then k else 1 fi, k = 1..25)]); %p A357588 # Alternative: %p A357588 CompInv := proc(len, seqfun) local n, k, m, g, M, A; %p A357588 A := [seq(seqfun(i), i=1..len)]; %p A357588 M := Matrix(len+1, shape=triangular[lower]); M[1,1] := 1; %p A357588 for m from 2 to len + 1 do M[m, m] := M[m - 1, m - 1]/A[1]; %p A357588 for k from m-1 by -1 to 2 do M[m, k] := M[m-1, k-1] - %p A357588 add(A[i+1]*M[m, k+i], i=1..m-k)/A[1] od od; seq(M[k, 2], k=2..len + 1) end: %p A357588 CompInv(25, n -> if isprime(n) then n else 1 fi); %Y A357588 Cf. A089026, A357368. %K A357588 sign %O A357588 1,2 %A A357588 _Peter Luschny_, Oct 04 2022