This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357592 #8 Nov 19 2022 14:08:00 %S A357592 3,11,34,96,260,683,1757,4447,11114,27493 %N A357592 Number of edges of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector. %H A357592 L. Escobar, P. Gallardo, J. González-Anaya, J. L. González, G. Montúfar, and A. H. Morales, <a href="https://arxiv.org/abs/2209.14978">Enumeration of max-pooling responses with generalized permutohedra</a>, arXiv:2209.14978 [math.CO], 2022. (See Table 2) %o A357592 (Sage) def a(n): return len(PP(n,3,1).graph().edges()) %o A357592 def Delta(I,n): %o A357592 IM = identity_matrix(n) %o A357592 return Polyhedron(vertices=[IM[e] for e in I],backend='normaliz') %o A357592 def Py(n,SL,yL): %o A357592 return sum(yL[i]*Delta(SL[i],n) for i in range(len(SL))) %o A357592 def PP(n,k,s): %o A357592 SS = [set(range(s*i,k+s*i)) for i in range(n)],[1,]*(n) %o A357592 return Py(s*(n-1)+k,SS[0],SS[1]) %o A357592 [a(n) for n in range(1,4)] %Y A357592 Cf. A033303, A007070. %K A357592 nonn,hard,more %O A357592 1,1 %A A357592 _Alejandro H. Morales_, Oct 05 2022