This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A357593 #10 Nov 19 2022 20:28:44 %S A357593 8,26,88,298,1016,3466,11832,40394,137912,470858 %N A357593 Number of faces of the Minkowski sum of n simplices with vertices e_(i+1), e_(i+2), e_(i+3) for i=0,...,n-1, where e_i is a standard basis vector. %H A357593 L. Escobar, P. Gallardo, J. González-Anaya, J. L. González, G. Montúfar, and A. H. Morales, <a href="https://arxiv.org/abs/2209.14978">Enumeration of max-pooling responses with generalized permutohedra</a>, arXiv:2209.14978 [math.CO], 2022. (See Table 3) %e A357593 For n=1, the polytope is the simplex with vertices (1,0,0), (0,1,0), and (0,0,1) that has a(1)=8 faces (1 empty face, 3 vertices, 3 edges, and 1 facet). %o A357593 (Sage) def a(n): return add(PP(n,3,1).f_vector()) %o A357593 def Delta(I,n): %o A357593 IM = identity_matrix(n) %o A357593 return Polyhedron(vertices=[IM[e] for e in I],backend='normaliz') %o A357593 def Py(n,SL,yL): %o A357593 return sum(yL[i]*Delta(SL[i],n) for i in range(len(SL))) %o A357593 def PP(n,k,s): %o A357593 SS = [set(range(s*i,k+s*i)) for i in range(n)],[1,]*(n) %o A357593 return Py(s*(n-1)+k,SS[0],SS[1]) %o A357593 [a(n) for n in range(1,4)] %Y A357593 Cf. A033303, A007070. %K A357593 nonn,hard,more %O A357593 1,1 %A A357593 _Alejandro H. Morales_, Oct 05 2022